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Abstract— The fundamental traffic diagram gives the relation Il. MINPLUS ALGEBRA

between the flow and the density of vehicles on a road. . . .
This diagram has been obtained for one circular road in the N this section we recall the minplus algebra results that
deterministic and stochastic cases. In this paper we revisthe ~ we will use in the traffic modeling sections. The reader can

simplest example of two roads and one crossing given in [2] consult [1] for more details. The structuR,;, = {{R U
and we study the interaction between crossings on a system {+00},®, ®} is defined by the sékU{+oo} endowed with

of four roads with two crossings. After showing numerically . s .
the existence of an average flow, we compute the fundamental two operationsmin (denoted by®, called minplussum)

diagram of the system and we study its various phases. We a@nd+ (denoted byx, called minplugproduc). The element
compare the fundamental diagrams obtained with different ¢ = oo is the zero element:e @ « = z, it is absorbent:
c_rossing policies (right priorit_y, oper_l-lqop and_ feedbacktraffic s® 2z = . The element = 0 is theunit elemente® a = a.
light). We show that the ‘right priority” policy blocks the The principal differences with the standard algebra are the

system at a specific vehicle density. This jam is explained kifie . . e o -
appearance of a road circuit full of vehicles. Finally we sha the idempotencynd the nonsimplification of additioniba = a,

important influence of the crossing design on the fundamenta anda®b=c@b =+ a=c. This algebra is Callemir?plus
diagram. algebra. From the minplus structure on scalars, we induce an

idempotent semiring structure on the set of square matrices
with the element-wise minimum for addition, and product

| INTRODUCTION operation defined by

The fundamental traffic diagram giving the relation be- (A® B);; = min(Ag, + By;).
tween the flow and the density of vehicles on a road has ' k
been obtained theoretically and by simulation for one roatihe zero element and the unit element are still denoted by
in [7], [12], [5], [15], [3], [8], [6]. This diagram has also ande. We associate to a square mata precedence graph
been obtained, numerically in [2], for a system of twog(A) whose nodes correspond to the columns of the matrix
roads with a crossing ( in the deterministic case with & and whose arcs correspond to nonnull entries (the weight
given turning policy). In this reference, the different paa of an arc(i, j) being the nonnull entry ;). We define the
of the system are analyzed. This kind of systems (in th&eight of a pathp, denoted byip|,,, the minplus product of
stochastic case without turning possibility) have beew alsyeights of the arcs composing the path (i.e. the standard sum
studied in [9], [10], [11]. Often, in statistical physicgllular  of its weights). The number of arcs of a paihis denoted
automaton models are used to derive this macroscopic layy |p|;. We recall the following principal results discusssed
from microscopic models [6], [13],[14]. in details in [1].

In this paper, we study the fundamental traffic diagram for Theoreml: Given A a m x m minplus matrix, if the
a system of four roads and two crossings in order to show thveeights of all the circuits ofG(A) are positive, then the
effect of the interaction between the two crossings. We adopquationX = A ® X & B admits a single solutionX =
the same approach as the one used in [3] and [2]. FromA ® B where:
Petri net model, we derive a dynamics using linear operators o m—1
in standard and minplus algebras. By simulations we show A* — @A" — @ A
the existence of an average flow which is independent of the ne0 ne0
initial position of the vehicles. In the fundamental diagra  Theorem?2: If the associated grapd(A) with the min-
clearly, appear three phases depending on the vehicletgensplus matrix A is strongly connected, then the matuixhas
The high density phase is obtained as soon as there is enodghinique eigenvalug € Ryin:
vehicles to form a road circuit full of vehicles. Then we stud I
the influence on the fundamental diagram of three crossing 3X € R”, : A® X = A ® X with A = min —~.
control policies : right-priority, openloop traffic lighoatrol, ec ey
and feedback traffic light. Finally we study the influence ofvhereC is the set of the circuits of (A).
crossing design. On the simplest system it appears a largeTheorem3: If the graphG(A) associated with the min-
improvement of the average flow at the medium density bylus matrix A is strongly connected, then the linear miplus
the addition of one vehicle place in the junction. dynamics defined byX,, ., = A® X,, is asymptotically pe-

riodic, i.e.
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I1l. CONTINUOUS TIMED PETRI NETS because transitions downstream of some places would be

A continuous Petri net is similar to a conventional Petrin conflict for molecules consumption. In this case, we
net but fluids composed of molecules circulate instead GRUSt give consumption rules, for example by defining an
tokens. Mathematically this means that the numbers of wkefrder of priorities for transitions in conflict, or by impog
which are integers, in a conventional Petri net, becomdyoportions of consumption. As soon as this kind of conflict
fluid volumes and therefore are real numbers. Moreover tHg resolved, the Petri net becomes deterministic. Contiauo
transition firings can be seen now as chemical reactioi€tri nets have dynamics given by the following theorem
consuming available necessary molecules and produciMdtich defines uniquely or gives constraints to the firing
other molecules. trajectoriesX. _

A continuous timed Petri net is a graph with two kinds Theoremé4: Denoting byX = (X“).co the vector of the
of nodes {ransitions and placed, and two kinds of arcs Sequences(? = (X7).cz where the entryX[ denotes the
(production arcsand synchronization args We denote by cumulated firing number of the transitiapup to timen,

Q (with Q elements) the set of transitions, and By(with  these firing trajectories satisfy:

P elgments) the set of places. Production arcs go from 0={XH®) - M)}oD.

transitions to places, and synchronization arcs go frorogsia » _ _ L _

to transitions. Moreover the firing trajectories of deterministic Petrigate
With a Petri net, we associate a minplus maffix Q de-  defined uniquely by :

notegl byD, calledsynchronization matrixand twp standa_lrd X ={XH (@)} ®D,

matrices thel) x P denotedH (0) called production matrix , , LA

and theP x Q matrix M called consumption matrix with H'(6)qp = H(d)gp/Mpy ) and D, = a, =

The synchronization matrix is defined b9,, = a, if  %/Mpqy(p) (0N the non null arcs) wherg (p) denotes the
there exists an arc from € P to ¢ € Q and D, = ¢ if index of the r_lonnull entry of the ling (_)f M.
not, wherea,, is the initial amount of fluid in place still ~ These equations tell that, at each time upstream each
shown graphically by the tokens in the places but which jransition t_here is at least one place which has no available
now a real number. The production matrix is defined by {ken (be in the place enough time to be used).
delay operatottf,,(6) = hg,d7 if there exists an arc from A, Event graphs
g € Qtop e P and Hy(6) = 0 otherwise, wheréy,, is
the multiplicity of the ardq, p), it determines the number of
molecules produced ip by one firing ofg (explained later).
The numberr, is the minimum sojourn time of molecules
in the placep, calledtemporization represented graphically
by sticks in the places. A delay operator acts on serie
it is defined byhd™ : (Xn)nez — h(Xn—7)nez. The
consumption matrix\/ is defined byM,,, > 0 if there exists
an arc fromp to ¢, andM,,, = 0 if not. The numbed/,,, > 0
is the multiplicity of the ard(p, ¢), it determines how many

Deterministic Petri nets for which each place has only one
upstream production arc of multiplicitiy are calledevent
graphs The dynamics of an event graph is linear in minplus
algebra : X = X ® A(5) where A(0)yy = a, ® 6” and
wherep is the single place connectingo ¢’. The following

eorem is a corollary of Theorem 2 (see [1]).

Theorem5: For a strongly connected event graph, the
throughput defined byA = lim,, X?/n is independent of
q, and it is equal to :

molecules are consumed in the placéy one firing of the \ = min ﬂ
transitiong. Thus, a Petri net is characterized by the 5-uple : ceC el
{P,Q H(5), M, D}. whereC is the set of circuits of the event graghy, is the

We say that a Petri net geterministicif from each place total initial amount of fluid in the circuit, and|c|; is the
leaves exactly one downstream arc (one nonnull entry in eagbtal “minimal sojourn time” of the places in the circuit
line of the consumption matrix). If there is a place from ) ,
which leave more than one arc it is calladndeterministic  B- Undiscounted Petri nets
Dynamics of Petri nets is constrained by what is called the If we impose consumption proportions by downstream
transition firings At a given time, a transitiony can fire transition of places, the dynamic of the corresponding non-
if in each upstream place, there is some molecules of fluideterministic continuous Petri net can be interpretedrimte
whose sojourn time exceeds the minimum sojourn time iaf optimal stochastic control [4].
the place. We denote by™ (resp.q°“!) the set of places = We call routing policy p a constraint on the nondeter-
upstream (resp. downstream) of the transitjorOne firing ministic continuous Petri net imposing the proportieg,
consumes (from each plage € ¢*) M,, molecules and (with >° , p,e = 1) of molecules leaving a plageto go to
produces (to each plages ¢°“*) hy, molecules. transitionq’. The nondeterministic continuous Petri net for
In the case of nondeterministic Petri nets, transition girinwhich the routing policyp,, satisfies

does not completely define the dynamics of the Petri net, ZNé’q/ — 1. Vp, with Nf;’q/ 2 oo [ My
q

1Sometimes we call consumption arcs the arcs corresponaliagégative
production which are arcs from transitions to places. Thaystmo be
confused with the arcs of the matrik/ which goes from places to  2if f is a nonlinear function, thenX = (X&)f means(X,+1 =
transitions. f(Xn))nen



are calledundiscounted Petri net§he set{ N?,p € P} can One vehicle occupies one section. If the occupied section
be seen as a set of stochastic transition matrices comtrollss not a crossing input, and if the section ahead is empty,
by p. then, the vehicle moves to the section ahead. A vehicle in a
Denoting by® the contraction operation defined by :  section connected to a crossing enters in the crossing if the
crossing if free and if it is on the priority road. If the velgc
(A©B)y = @{AP‘?/ @ By } is on thge non priority road it entpers oﬁly if the crossing is
P free and if there is no vehicle on the priority road that wants
for any couple of@ x P matricesA and B, the dynamic is  enter. In the other cases the vehicle doesn’t move.

given by the following theorem (see [4]). , . i
Theoremé: The undiscounted Petri nets have firing se- e call densityd the ratiop/m of the number of vehicles

quences satisfying p by the number of sections.. We denote byX? the total
number of transition firings up to time at transitiong and

1 " . q .
X ={XH"(6)} D", we call flow the quantityf = - lim,,_ 4 o 2. This number

with H"(8)gpy = NP,67 and D", = apppy /Myq the is independent of for connected graphs. The fundamental
qq’ pq’ T . . ; g
initial weighted fluidamount. The throughput is then the diagram gives the relation betweg¢randd. On the Petri net

optimal average cost by unit of time of an undiscounted
stochastic control problem :

where : —F denotes the possible final classes of the Markov
chains controlled by the set of feedbagk: Q — P
(consisting to choose one place upstream each transition),
— |f|. denotes the average initial weighted fluid amount in
the final classf, — | f|: the average “minimum sojourn time”

in the final classf (where the average is in the sense of the
invariant probability of the final clasg).

IV. FUNDAMENTAL DIAGRAMS FOR A SYSTEM OF TWO
CIRCULAR ROADS AND ONE CROSSING

The fundamental diagram for one circular road with a
speed reducer has been solved analytically in [2]. We recall
here the fundamental diagrams obtained experimentally in Fig. 2. Two circular roads and one crossing
[2] for a system of two circular roads and a crossing.

A. The Model _ ) ) )
. . of Figure 2, each road is made mfections and each section
We consider a system of two one-way circular roads and.

a crossing, as one can see it on the left of Figure 1. Vehiclds'> represented Py two placeg and a- F.Or road sections

: : . : : . ¢, if ag =0 thena, = 1 and the section is free. B, =1
move without overtaking. The crossing circulation rule i - : . . .
i - : . thena, = 0 and there is a car in the section. For the crossing
priority to the right”. Same proportions of the cars leayin

the junction go to south and to west. The Petri net model f??ct|on, ifa, = 0 anda,, = 0 thena, = 1 anda, = 1 and
) : e crossing is free. Transitiop corresponds to the access
given on Figure 2.

permission in section. The crossing is a particular section
represented by four places( a2, , ., a2, ), with two entries
(QVv q2u) and two eXitS 'ﬁlv QV+1)-

The multiplicities 1/2 express the fact that half of the

vehicles entering to the crossing goes straight, while thero
half turns.

Thanks to the multiplicities-1 we can count the autho-
rization to enter in the crossing. For example a token in
the placea, gives an authorization to a vehicle from the
north to enter in the crossing. The total number of north
authorizations to enter is equal to the total number of ehic
having left the crossing minus the total of east authorirei
given.

Fig. 1. Two circular roads and one crossing

Each road is cut in sections, the crossing is considered asThe vehicles are discrete objects (a half of a car has no
a specific section. Each section can contain at most one careaning). But nevertheless we will approximate the traffic



of discrete object by a fluid

If we denote byX ¢ the firing number of the transitiopup
to time n, then the continuous dynamics written in minplus
algebra, is (see [2]) :
« On the roads, the total number entered in the section
q is equal to the minimum between : — the number
(X4—1) entered in sectiog — 1 plus the numberd,_1)
of vehicle at initial time in this section, — the number 1 Pt
(X4+1) having left sectiory because they have entered L

in sectiong + 1 plus the numberd) of free places in "
sectiong at initial time :

Fig. 3. Fundamental Diagrams for two roads and a crossing different
_ _ ratios of the section numbers in the two roads.
X5 =a,1 X" @a, X, 1)

ge{2,...,v—1v+2,....2v—-1}. (2)

« On the crossing entries, the total number of entere@eneralized eigenvalue problem : findand X nontrivial
vehicles is the minimum between the number of vesuch thatX = f(X, ) is still an open question on which

hicles that want enter and the authorization of enteringye are working.
as discussed previously :

V. FOUR ROADS WITH TWO CROSSINGS
X"/6=a, X' X"/ X* ®a, X", (3) To have a better understanding of the inter blocking of the
X5 = a9, X2 XV /(XY )6) @ agy_1 X271 . (4) crossings, we consider in this section the case of four roads

_ _ _ and two crossings as shown on Figure 4. It is supposed that
« On the crossing exits the total number having left thgehicles move in the same way as in the preceding section.

crossing by the South [resp. West] is the minimunThe “priority to the right” in this case implies that there is

between half of the one entered in the crossing angvo priority roads. We show the existence of the fundamental

the number having left the section after the crossing ifliagram for this system and discuss its various phases.
the south [resp. West] direction :

X5 =a, VXX ®a; X?, (5)
XS = ag, VXV X2 @@’ T XV (6)

In these equations, the minplus division “/” is the standard

subtraction, the minplus square is the division Byin o
standard algebra aridis the delay operator acting on series.

This system of equations is implicit but triangular, thus th

trajectory is well defined, and the system can be written:

X = (XH(5)) ® D . See the small example written in _ _ _
standard algebra shown in the appendix B, or [2] for a better Fig. 4. Four roads with two crossings.
understanding of the syntax of these equations.

B. Numerical Results A. Minplus and Petri net modeling

In Figure 3, we show the fundamental diagrams for The system is modelled by the Petri net shown on Figure 5.
different road section number ratios (frdno 10). See more The roads are numbered as indicated on this figure. As in the
comments and details in [2]. We can justify the existence gfreceding section, the model can be written by combining
the average flow theoretically, only in the simplest casemiv operators of standard algebra with those of minplus algebra
in the appendix A. In this case, after some algebraic manipVe denote byg;; the jth transition § € {1,---v}) of the
ulation we can reduce the computation of the average flowad i, and by X7 the number of firings of the transition
to the throughput of undiscounted Petri nets (Theorem 6).q(; ;) Up to timen. Using the minplus operators, the dynam-

The general case can be writte = f(X,§) with ics of this system is well defined.

f(X,0) = (XH(§)) ® D homogeneous of degree 1 iXi In this case the system can be written alsb =
(that is f(A ® X,8) = A ® f(X,d)) and nonpositive (there (X H(5)) ® D, but we will not explicit the operatordl and
exists X > 0 such thatf(X,d) < 0) is not reducible easily D.

to dynamic programming problem. And the correspondin%' Global Fundamental Diagram

3The fluid approximation represents well the asymptotic rdigcsystems Simulations are done using the MaxPlus toolbox of Scilab
when we increase a scale factor (total number of sectiors préservation

! . . . , N [16]. As in the case of two roads with a crossing, we study
of proportion of section numbers in the different roads)e Tluid approxi- h lation b h fl d the d . fvehi
mation dynamics is simpler : no rounding operator appeatisdrequations. the re auo_n etween the average flow and t .e ens.|ty Y Ye I-
See [2] for the dynamics of the discrete systems. cles for different ratios between the road sizes. Simufatio



road is the sum of sizes of two nonpriority roads. To
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Fig. 7. Dependence of the global diagram on the ratio betvirersum

of the sizes of the priority roads and the sum of the sizes ehtinpriority
roads.

Fig. 5.

The Petri net corresponding to four roads with twossiags.

show that for a fixed size of the system, the fundamental
traffic diagram depends only on the ratio between the sum
of sizes of the priority roads and the sum of sizes of the
nonpriority roads. If we fix this ratio and we vary the sizes

of the roads, we obtain, practically, the same diagram as

shown on Figure 6. We show on Figure 7 the dependence of
the fundamental diagram on this ratio.
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i Fig. 8. Fundamental diagram for two roads (20 sections eael) with
0.154

a crossing, and fundamental diagram for four roads (l0@ectach one)
with two crossings.
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check this assumption, we consider two systems: — the first
composed by two roads and one crossing, the size of each
N road being equal t®0 sections, — the second composed

o0 on Tz Con e s s Tar Do on T by four roads and two crossings, the size of each road

being equal tal0 sections. In Figure 8 we compare the two

Fig. 6. Dependence of the global diagram on the sizes of foad without dlagrams'

varying the ratio between the sum of sizes of priority roaas the sum of On Table I, we show initial configurations and asymptotic

sizes of nonpriority roads. stationary regimes corresponding to each phase of the funda

mental diagram. The obtained three phases are qualitativel

We remark, first, that for reasonable ratios between theSinilar to those corresponding to a system of two roads with

two sizes (one size is not negligible with respect to thethe ON€ crossing given in [2].

the maximum flow is equal to half of the maximum flow 1) Low density phase : a periodic mode appears where

obtained in the case of one circular road.

vehicles circulate without being in the way of each
We remark, second, that a system of four roads with other.

two crossings behaves like a system of two roads with one 2) Average density phase : a periodic mode appears where
crossing, where the size of the priority road is the sum of

sizes of two priority roads, and the size of the nonpriority

the crossings are used at the maximum speed. Vehicles
on the priority roads are not in the way of each other.



. . . Road 1 Road 2
Vehicles on the nonpriority roads have to wait at the o.s 025

crossings.

3) High density phase : a deadlock appears, the nonpri-
ority roads are full and two vehicles in the crossings
want use these full roads.

Road 3 Road 4

025 025

0 0.25 1 0 0.25 1

TABLE Il
FUNDAMENTAL DIAGRAM OF EACH ROAD

Roads without priority (1 and 4) Roads with priority (2 and 3)
0.25 0.25

0 0.25 05 1 0 0.25 1
TABLE Il

FUNDAMENTAL DIAGRAM OF PRIORITY ROADS AND FUNDAMENTAL
DIAGRAM OF NONPRIORITY ROADS

P 3
Phase 3, initial configuration Phase 3, asymptotic periodic configuration

TABLE |
INITIAL AND ASYMPTOTIC (PERIODIC) CONFIGURATIONS FOR THE The global flow is constant during this phase and is at the
THREE PHASES maximum value.

D. The high density phase
In high enough density case, nonpriority roads fill up until

C. Fundamental diagram for each road one full circuit appears on the nonpriority roads. Then this
In Table Il we show the fundamental diagram correspondsrowded circuit creates a deadlock even if there is stillta lo
ing to each of the four roads made 26 sections. These of places in the system see Table IV. This deadlock appears
diagrams are obtained by computing the average flow aas soon as there is enough vehicles to full a circuit of non

each road (represented on the y-axis) for a discretization priority road. The worst appears surely.
roads.

In Table Il we show the aggregated fundamental diagra
corresponding to the two priority roads and the aggregatg

We can see that aggregated nonpriority roads have a errt: DEabLOCK I: 1 CIRCULAR ROAD. MIDDLE : DEADLOCK II: 2
fundamental diagram similar to the one of a circular road roaps wiTH 1 CROSSING RIGHT : DEADLOCK I11: 4 ROADS WITH 2
with a speed reducer [2], and that aggregated priority roads CROSSINGS
that the average density phase is reduced to the unique poinfThe qualitative results discussed here on the traffic phases
of maximal flow. Added vehicles in this phase increase thfor small systems are still valid for large network of roads.
density in the nonpriority roads but not in the priority read In a future paper we will explain a system methodology to

the density set (x-axis). We can see that the two prioritgdsoa
fundamental diagram corresponding to the two nonpriorit . T
have a diagram with histeresis on which to one density does

have practically the same diagram, idem for the nonpriorit
roads. TABLE IV
not correspond a unique flow. On this last diagram we see



build large network of roads and show that we obtain same As shown on Figure 10, during the low density phase, the

kind of phase diagrams for large networks. new design doesn’t improve the flow. However, during the
average density phase, the improvement is very important,
VI. CONTROL AND DESIGN OF CROSSINGS and the maximum value of the flow reaches the maximum

To improve the traffic flow, we can use open loop ofeached by one circular road without crossing !
feedback traffic lights in order to avoid the blocking during
the high density phase, and/or improve the crossings design
in order to avoid the bottleneck at average density.

A. Comparison of intersection policies

We compare, on a symmetrical system (each road is
composed oR5 sections), three crossing control policies : ]

o Right priority.

e Openloop traffic lights (the length of the light phases
does not depend on the traffic).

e Feedback traffic lights control (the lengths of the phase
depend on the vehicle number in the controlled streets
(local feedback) or more generally on all the vehicle During the high density phase, as soon as the number of
numbers of the different streets (for example determinedehicles exceeds the size of the nonpriority road the deldlo
by a LQG method). The experiments shown here hawean appear. In this case with a feedback light control we can
been done only with simple local feedback. With thishope to reach the same diagram as in the unique circular
simple local feedback we are able to reach the maximabvad case.
flow possible (corresponding to a circular road with a
retarder).

gig. 10. Fundamental diagrams with buffer of size 1 and 2 a$sing.

VIl. COMPLEXITY

The simulation of this model cost the integration of
Xi+1 = (XxH) ® D which is linear in the number of
1 \ sections since the matricés and D are sparse with a linear
\\ number of non null entries. To compute the average flow
] y \ we have to wait the periodic regime. The Figure 11 shows
2 \ 4 simulation time to reach this mode, according to the size
] ‘ of the system. We see, on this example, that the time to
\ reach the periodic regime increases linearly with the size
\ of the system. We can conclude empirically that the cost is
approximatively quadratic in the size of the network.

025

005

“Ttime (s)

Fig. 9. Comparison of three management policies: — righdribyi (1), —
open loop light control (2), — feedback light control (3).

On Figure 9, we give the diagrams corresponding to the three

policies. We can see that traffic lights improve the flow only

at medium and large density and does not reduce the flow at

small density. Moreover, feedback policy seems to improve

a lot at high density. The instability of the openloop policy

at high density is still not clarified. Fig. 11. The complexity of the simulation.
Another advantage of setting the feedback traffic lights is

that they dissolve more quickly the jams than an open loop
traffic light. VIIl. CONCLUSION

The fundamental traffic diagram of a system of four roads
with two crossings have the same phases as the diagram
Here we study the influence of the buffer size in thef two roads with one crossing one. When the density is

crossing. In the previous model only one car can stay ilow, vehicles move freely without being in the way of each
the crossing (buffer size one). Let us study the case of aher. For medium densities vehicles on priority roads move
buffer size of two vehicles. The only modification to do infreely when the other ones have to wait at crossings. The
the Petri net modelling of Figure 1 is to change the condtrailigh density phase starts as soon the vehicles are enough to
a, +as, +a, =1into a, + as, +a, = 2. form a circuit of full nonpriority roads. For these densitie

size of the system
T T

T
400 600 800 1000 1200 1400 1600

B. Improvement of the crossing design.



1/41 flow

there are deadlocks even if there is still a lot of places @& th_ Jnumber of events
system. Light control avoid these deadlocks. With feedback’
light control we can reach almost the best possible diagram
corresponding to a unique circular road with speed reducer.
Moreover by buffering the crossing it is possible to reach ;

the diagram of a unique circular road without crossing and | _ ol density

without speed reducer. The analysis is clear numerically an J“=——————————> o 5 3 1

need more work to be proven analytically using dynamic

programming method or minplus algebra techniques. Fig. 12. Left. The number of events o1, X2, X3 and X*. Right. The

fundamental traffic diagram.
APPENDIX

A. Resolution of a small system

Let us consider the eigenvalue problem associated to th&his situation corresponds to one vehicle in the system of
simplest case’ = 2 of the dynamics(2), - - , (6) with the three sections, _that_né: 1/3. The obtained flow |5f =1/4
fluid approximation. Denoting\ the eigenvalue and’ the (Figure 12) which is the maximum flow. The diagram has

corresponding eigen vector, we have to solve the system.P&en given also for fractional number of vehicles. The only
other integer possibility is the case of 2 cars which gives a

X2\ =@ X' X3/ X e ay X1, (7)  flow of 0.
XN = ay X' X3/(X2N) @ asX? (8) REFERENCES
1 / ~ 2
X A=avX2Xtoa; X ) (9) [1] F. Baccelli, G. Cohen, G.J. Olsder, and J.P. Quad&ynchronization
X3\ = ay /X2X4 ®adx?t. (10) and Linearity Wiley, 1992 available http://maxplus.org.

[2] N. Farhi, M. Goursat, and J.P. Quadrd@erivation of the fundamental
traffic diagram for two circular roads and a crossing usingnmius

Theorem7: If a; > a4, then there is a unique positive algebra and Petri net modelingn Proceedings of the 44th IEEE -

eigenvalue to(7),-- -, (10) which is the unique\ solution CDC-ECC Seville December 2005.
in X and )\ of [3] P. Lotito, E. Mancinelli, J.P. Quadrad Min-Plus Derivation of the
Fundamental Car-Traffic LawEEE-AC V.50, N.5, pp.699-705, 2005.
X%\ = ale (11) [4] G. Cohen, S. Gaubert and J.P. Quadra@symptotic Throughput of
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