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ABOUT MIN-PLUS PRODUCT FORMS

O. FALL & J.P. QUADRAT

ABSTRACT. We study here the min-plus analogues of Jackson networks of queues
and show that the corresponding geodesic problem&®oan be reduced to
minimal cost flow problems on complete graphs hawvimgodes. In some par-
ticular cases, these flow problems can be solved explicitly giving formulae ana-
logue, in the min-plus algebra, to the standard product forms.

Nous €tudions les analogues min-plus deseéaux de files d'attente Jack-
sonien et montrons que les prebiés correspondants deagsique sufZ™ se
ramenenta des prot#imes de floa cait minimal sur des graphes complaten’
noeuds. Dans certain cas, ces pesbés de flot peuvemtre Esolus explicite-
ment, donnant, dans I'addpre min-plus, les analogues des formes-produit stan-
dards.

1. INTRODUCTION

We can associate to a network mfqueues a random walk dd". The min-
plus analogue of a random walk is a decision walk where to eachiticans—
which corresponds to a decision — is associated a cost instead of a probability.
In this min-plus context, the dynamic programming equation plays the role of the
Kolmogorov equation. It is well known that the invariant measure of a Jackson
network can be computed explicitly see [17, 5, 26, 10]. The min-plus analogue
consists in computing the optimal cost to go from a nad® a nodey in the
state space. It is a kind of geodesic problemZh with a field of admissible
displacements corresponding to the admissible routings of the network. We show
that this geodesic problem can be solved by a standard flow problem under the
hypothesis of shift invariance of the transition costs. Moreover, for some particular
ends g, y) of the geodesic, an explicit formula, analogue to the standard product
form, giving the minimal distance betwegrandy, is obtained.

2. SOME MIN-PLUS ALGEBRA AND NOTATIONS

A semiringKC is a set endowed with two operations denogednd® whered
is associative, commutative with zero element denetegl is associative, admits
a unit element denoteg] and distributes ove®; zero is absorbingg(® a = a ®
¢ = ¢ forall a € K). This semiring iscommutativevhen ® is commutative.
A module on a semiring is calledsemimoduleA dioid K is a semiring which is
idempotentdda = a, Va € K). A[commutative, resp. idempotersmifields a
[commutative, resp. idempotent] semiring whose nonzero elements are invertible.
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2 O. FALL & J.P. QUADRAT

The setR U {400} endowed with the two operatiom® = min, ® = +, is
denotedRin. This structure is traditionally called min-plus algebra. It is an idem-
potent semifield witte = +o0o ande = 0. The structuréR,, completed with
—o0, with the conventiontoo — co = +o0, is a dioid denote@®mjn.

We denoteM , the dioid of(p, p)-matrices with entries in the semirikg The
matrix product inM is

def
[AB];;

[A® Bl; & min{ A + Byj]
All the entries of the zero matrix oM, are +oo. The diagonal entries of the
identity matrix of M, are 0, the other entries beirgx.

With a matrixM in M, (K), we associate precedence grap(M) = (N, P)
with nodesV = {1,2,---,n}, and arcsP = {xy | X,y € N, Myy # ¢}. The
numberMyy, when it is nonzero, is called the weight of the arc

A pathr, of lengthl, with origin x and endy, is an ordered set of nodes=
oy - - - With mg = X andm = y, andrjmi, € Pforalli =0,---,1 —1. The
coupler; i1 are called the arcs af and ther; its nodes. Théengthof the pathr
is denotedx|. The couplexy of theendsof r is denoted ). When the two ends
of = are equal one says thatis a circuit. Theweightof =, denotedr (M), is the
®-product of the weights of its arcs. For example we hayga M) = Myy ® My,.

The set of all paths with endsyand length is denoted?)'(y. The paths of length
0 are the node®® = V. Then,P%, is the set of all paths with endsy andP* the
set of all paths. We have :

PE P
=0
Forp C P, (p) is the set of the ends of the pathsmf Then denotingPy the

set of arcs of the graph associated to the madttiwe have the following trivial
accessiblity results :

PropPosSITION1. For M € M,, we have :
Puk = (PX), Pu» = (P*).
For o C P* one define :
def
p(MEP M),
Tep

which is the infimum of the weights of all the paths belongingto
We denote
M*dgf @ M ’
i=0

which exists if we accept entries Rin. Then, we have the following interpreta-
tion of the matrix product in\(,.

ProPOSITION2. For M € M,, we have
PryM) = M)y, P (M) = (M¥)yy . )
The matrix M has no entries equal te-co iff there is no circuits with negative
weight inP.
More details about min-plus algebra can be found in [6, 22, 15, 18, 16].
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ABOUT MIN-PLUS PRODUCT FORMS 3

3. DECISION CALCULUS

A min-plus probability calculus has been developed in [25, 13,7, 1, 2, 3, 4, 12].
Let us recall the most elementary facts. On dbghcost c: U — Ry satisfying
Py c(u) = eis given. Itis called a min-pluprobability density A subsetA

of U, seen as a decision set, is the analogue of an event. The cost of the decisior

setAis c(A) def P, C(W), it corresponds to the probability of an event. Then,

the functionsX : U — R are called decision variables by analogy with random

variables. They induce the costg(x) def EBX(U):X c(u) on R. Following this

analogy all the standard notions of the probability calculus can be introduced.
The min-plus Markov chain is called a Bellman chain, it is defined by a tran-

sition cost matrixM € M, satisfyingMe = e wheree denotes the column &

of sizen. Then, given an initial cost, which is a line vectdrsatisfyingc®e = e,

we can define a cost on the set of path®, by c(r) = cgon(M) forall 7 € P!

andl € N. Then, the analogue of the forward Kolmogorov equation is the forward

Bellman equatiore” = ¢c"* @ M, c° given. It gives the marginal cost, for the

Bellman chainX”(zr)dif 7n, t0 be in state (node) € N at timen.
If a transition cost matrix satisfies

Mxy: Myx>o, Mxxzo, Vy#XEN,

then the matrixM;, defines a metric. Indeed, we hat, = 0 and Mg, <
M5, + M, by definition of the matrix product and the fact tHdt'M* = M*.

A path fromx to y in G(M) achieving the minimal cost among the paths of any
length is called geodesigoining x to y. We will still call a geodesic an optimal
path when the matriM is nonsymmetric.

4. MIN-PLUS CLOSEDJACKSON SERVICE NETWORKS

A closed Jackson network of queues is a set ofistomers anth services. The
customers wait for services in queues attached to each service. The customers ar
served in the order of arrival. The service is random and markovian. In discrete
time situation, aim, m) transition probability matrix is given. The entry;; is
the probability that a customer, served at quiegmes to queug, if the queue is
not empty. If the queue is empty, this probability is 0. Such a system is a Markov
chain with state space :

S{Pdif (xeN":1x=n},
where 1 denotes the vectors with all its entries equal to 1 with size adapted to the
context (herem). Itis clear that, it is irreducible, the Markov chain describing the
system is irreducible. Therefore it has a unique invariant megsufréis measure
is explicitly computable :
Px = kgi‘l L
with 6 any solution obr = 6 andk a normalizing constant such that = 1.

The best way to understand what is a min-plus closed Jackson service network
is to consider the following problem. We consider a company renting cars. It has
n cars andm parkings in which customers can rent cars. The customers can rent
a car in a parking and leave the rented car in another parking. After some time
the distribution of the cars in the parkings is not satisfactory and the company has
to transport the cars to achieve a better distribution. Givéime (m, m) matrix
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4 O. FALL & J.P. QUADRAT

of transportation cost from a parking to another, the problem is to determine the

minimal cost of the transportation from a distributboe= (x1, - - - , Xmn) of the cars

in the parking to another ong = (yi, - - -, Yym) and to compute the best plan of

transportation. Therefore the precise transportation problem is the following.
MIN-PLUS CLOSED JACKSON PROBLEM (TRANSPORTATIONPROBLEM). Gi-

ven the(m, m) transition cost matrix r irreducible such thagr> 0ifi # | =

1,---,mandf =0foralli =1,---,m, compute Mforthe the Bellman chain

on ' of transition cost M defined by M; x 2 r;j and

def
Tij(xl7“‘ 7Xm)§(xl7‘.‘ 7X| _17‘.‘ 7XJ +17.“7xm)7
fori,j=12,---,m.
The operatofilj; corresponds to the transportation of a car from the parikiog

the parkingj. We denoterif {Tij, i,j=1,---, m}.

If rij = eforalli =1,---,m (the absence of transportation costs nothing)
the previous problem corresponds to the computation of the largest invariant cost
satisfyingc = cM, andck = e. Indeed, in this case the left eigen semimodule has
as many independent generators as staRemarking that the diagonal entries of
M* aree, itis clearM; M = My . Then, from the fact thaj = bM* is the largest
solution ofg = gM @ b, we can prove that the searched extremal left eigenvector
is My .

5. SOLUTION OF THE 2-PARKINGS TRANSPORTATION PROBLEM

This transportation problem is trivial in the 2-parkings case. Let us denote :

a def rio, b def ro1 andx the number of cars in the first parking calléd The

number of cars in the second parkiBgs n — x. Therefore a possible state of the
system isx. The transition cost matri¥ is :

e b e - €
a e b - €

e - aeb
€ - € a e

The computation oM* is easy in this case :
e b - Db

a e b - p+?
an-1 a e b
a" . a2 a e

Suppose that >y, the entryM, = a*~¥ in the min-plus algebra corresponds
toa(x — y) in the standard algebra which is transportation cost-efy cars from
Ato B. Similarly, if x <y, My, = bY™* corresponds to the transportation cost
y — x cars fromB to A.

In the general casm > 2 it is not easy to build and manipulate mathk but
the 2-parkings case suggests that simple formulae exist.

ILet us recall that in the min-plus context the irrediilitip of the transition matrix assures the
uniqueness of the eigenvalue but not the uniqueness of the generators of the eigen semimodule se
[6] Section 3.7.
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6. SOLUTION OF THE M-PARKINGS TRANSPORTATION PROBLEM
Let us consider them-parkings case. In this case a patle P is
XTIOT?20TiX) - y=T o T 0. . TH(x) ,

with T' € 7. Since the arc®; of r arex Tjj (x) with x € A andTj; € 7 we can
code ) a pathr € P* in a simpler way by the couple >~ xu with x € N a
node ofG(M) andu € P/ a path ofG(r). Clearly we have :

a(M) = u(r), Vo ~ xu € P*.

Remarking that the vectdr;j (x) — x is independent ox let us call ity;; and
denotel’ = {y;j, i, ] = 1,---, m}. These vectors are not mutually independent
indeed we have the relations :

Yik =% +Vjk, Vi, j,k=1---,m.

For a pathe € P}, the evaluation(I") € Z™ is obtained by using the morphism
which to the concatenation associates the vectorial sum and to the letters associat:
the corresponding vectors Df For example for the patijkl € P;" we have :

KT = yij + ik + ¥a -

Then, the constraint on the paths (7) = xy with x, y € Z™ is equivalent to the
constrainiu(I') = y — x for the pathr ~ xu.

The cost of a patlu(r) depends only of the number of times each arc appears
in « and not of the order of the arcs. Similarly the constraigf) = y — x
does not depend of the order of the arcs in the patkince the evaluation(T")
corresponds to additions of vectors, and addition of vector is commutative. To
take account of this symmetry of the problem we derftehe set of equivalent
classes of paths (where two paths are equivalent if the arcs appear the same numbe
of times). Therefore, for. € PF we can take the representative= [[,.p a™.
For example the path = ijijk belongs to the class ofj )2(ji)(jk).

Itis clear thafu(r*) < u(r) because;; > rij . Moreover for eachu it existsx
such thau(r*) = a(r) andu (") = (). The pathi is obtained by substituting
the arcdj of u by pathsu;; such thatu;; (rij) = r;]-‘. InsideS" this substitution
is always possible. This is not always possible on the bounda8jf dfecause the
pathxu may leaveST. To avoid this difficulty we suppose that the costs on the
boundary arcs are nof butr;j.

We can summarize the previous considerations in the following proposition.

PrRopPosITION3. The optimal value of the transportation problem is :
M;y = P;y(M) = Pre(y —X),
with
def
O ()= @ w(r®).

nePs
wl)=z
The mathematical prograd, - (2) is a flow problem.
PrRoOPOSITION4. Denoting by7 the incidence matrix nodes-arcs of the complete
graph with m nodes we have :

y ol i *
&+ (2) ;g{) e,
Jo=2
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6 O. FALL & J.P. QUADRAT

whereg.r =3 ; 1ij ¢jj -

Proof. If we denote byg;; the exponent of the arg in the wordy € Pf. the
criteria of &+ (2) givesg.r*, its constraints are¢f ¢ = z. The only point to verify

is that : to the pathw = [](ij)?i, associated to the optimal, corresponds a

path in the class of ~ xu whose visited nodes belong &)". Let us suppose

that it is not the case, it would exist another ndden the optimal pathr and

a coordinaté € {1,---, m} such that; = inf(x, yi). Indeed, ifr leave S}
somewhere, it is necessary that a coordinate of one of its nodes becomes negative
Let us suppose that = x; (the arguments are the same in the other case). The
geodesixrs - - -t from x tot would satisfy :

7t|7i:Xi,|:1,‘~,k. (2)

Indeed, if we consider the flow problem associate to this new geodesic problem it
would have the constraigf¢ = zwith z = 0 and the optimal flow would satisfy

ok = ¢i = 0 for all k andl because, at node there is neither production nor
consummation and the transport costlors i < rif +r; by definition ofr *. This
implies that we can reduce thig tot geodesic” problem to a transportation prob-
lem without the parking. All the paths, associated to this reduced flow problem,
satisfy (2). This argument shows that it exists a path associated to the optimal flow,
such that, for all nodeand componernit 7 ; > inf(x;, yi) which is a contradiction

with the fact that all the these paths are supposed to I§gve O

COROLLARY 5. We have for all y and x satisfying x= Ofor j #iand x =n
My = @ i)Y
j#
and for all x and y satisfyingjy=O0for j #iandy =n
My = @ ).
j.#
Proof. In these two cases the flow problems are trivial. The nonnul components
are respectively; = y; andg;; = x;, for j #1i. O

This corollary gives the searched min-plus product form. In the future we will try
to extend this result, as it has been done in probability to more general problem, for
example when the transition costs depend of the number of cars in the parkings.

7. EXAMPLE

Let us consider the transportation system with 3 parkings and 6 cars, and trans-
portation costs :

0 1 +o0 e 1 ¢
r=1|-4o0 0 1 =le e 1
1 +o 0 1 € e
We have :
e 1 2
r*=12 e 1
1 2 e
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ABOUT MIN-PLUS PRODUCT FORMS 7

Let us suppose that= (0, 0, 6) andy = (2, 3, 1), we can apply the corollary, we
have :

My = (15)%(r5)° =2x14+3x2=8.
The Geodesic is given in Fig.1.

(0,6,0)

STy

(6,0,0) (0,0,6)

E_:i

FIGURE 1. Transportation System (6 cars, 3 parking).
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