
Algebraic Tools for the Performance
Evaluation of Discrete Event Systems∗

Guy COHEN†

Centre d’Automatique et Informatique, École des Mines de Paris,
35 Rue Saint-Honoré — 77305 Fontainebleau Cédex, France‡

Pierre MOLLER
Rhône-Poulenc, Lyon, France§

Jean-Pierre QUADRAT
INRIA, Le Chesnay, France

Michel VIOT
École Polytechnique, Palaiseau, France

Abstract
In this paper, it is shown that a certain class of Petri nets called event

graphs can be represented as linear ”time-invariant” finite-dimensional sys-
tems using some particular algebras. This sets the ground on which a theory
of these systems can be developped in a manner which is very analogous to
that of conventional linear system theory. Part 2 of the paper is devoted
to showing some preliminary basic developments in that direction. Indeed,
there are several ways in which one can consider event graphs as linear sys-
tems: these ways correspond to approaches in the time domain, in the event
domain and in a two-dimensional domain. In each of these approaches, a
different algebra has to be used for models to remain linear. However, the
common feature of these algebras is that they all fall into the axiomatic
definition of ”dioids”. Therefore, Part 1 of the paper is devoted to a unified
presentation of basic algebraic results on dioids.

1 Introduction

Definitions and examples of Discrete Event Dynamic Systems (DEDS) will cer-
tainly be found elsewhere in this special issue. But there are several aspects of
DEDS on which to focuss one’s attention. In this work, we are interested in
answering such questions as:
∗IEEE Proceedings, Vol. 77, pp. 39–58, 1989
†Also with INRIA.
‡This is the address for correspondence.
§On leave from IIASA, Laxenburg, Austria.

1

• how many events of a particular type will occur in a certain time interval?

• at which time the nth occurrence of an event of a certain type will
happen?. . .

This is what is usually meant by “performance evaluation”. Apart from dis-
crete event computer simulation which probably remains the most widespread
practice, performance evaluation is also the scope of queueing theory [11] and
timed Petri nets [17]. Whereas the former involves a stochastic framework and
is devoted to average long-term evaluation, the latter is rather deterministic and
it can deal with transient behaviour.

Our approach is also deterministic although there has been already some
attempt to extend it to stochastic situations [19, 15]. If one considers a manu-
facturing workshop for example, it may be argued that, on the short term, the
probability of machine breakdown is very low (hopefully!), whereas the service
times experienced by parts at all machines are likely to be deterministic (time
to drill a hole into a piece of iron, . . .). The same holds true in such contexts
as performance evaluation of dedicated chips in signal processing. . . However,
it is not in our intention to claim that a purely deterministic modelling of such
systems is uniformely realistic. The claim is that this deterministic approach
may sometimes be more adequate than assuming exponential service times for
example. If one is ready to admit this statement (so that our theory might
have a nonempty field of application), we believe that it is reasonable to start
a theory of DEDS with the simplest situation.

Apart from determinism, simplicity also means linearity. Linearity is a most
welcome property when it holds true. The major message in this paper is that,
for a certain class of DEDS, namely those also modelled by event graphs (a
special class of Petri nets — see Figure 1 hereafter), linearity appears to be
an intrinsic property, provided that one accepts the idea of getting familiar
with new algebraic tools. These algebraic structures, that we call dioids after
Gondran and Minoux [9], present some interesting similarities with our familiar
linear algebra, vector spaces, etc. . . Of course, there are also important differ-
ences. But it is striking to see how many features and concepts of conventional
linear system theory naturally extend to event graphs. Of course, the practi-
cal or intuitive meaning of these concepts should be adapted to the nature of
applications covered by DEDS, but the algebraic similarity often goes very far.

This paper comes after several other papers on the same topic. In the ear-
liest approach [3], a state space representation was introduced using variables
interpreted as dates (later on called daters) which were indexed by event num-
bers (integers). The dioid (R∪{−∞},max,+) [7] (or (Z∪{−∞},max,+) if one
prefers to deal with integer, rather than real, dates) was the appropriate alge-
braic tool for this event domain representation. Then, in [4], the corresponding
input-ouput representation, or transfer matrix, was proposed using formal poly-
nomials and series with coefficients in the above dioid. Finally, in [6], it was
briefly shown that another state space representation could be obtained using

2

y

u u

x x

x

1

1

2

2

3

Initial marking
of a place
(token)

Holding time
of tokens in a

place
(in time units)

.

variables indexed by (discrete) time (this is the usual time domain representa-
tion), those variables being interpreted as numbers of events (they were thus
called counters). But for this new model to remain linear, it was necessary to
appeal to another dioid, namely (Z ∪ {+∞},min,+). Again a corresponding
input-output representation could also be proposed. But we found that the
best representation was an input-output representation, in a two-dimensional
domain using series in two formal variables (the backward shift operators in
dating, say δ, and in counting, say γ) with boolean coefficients. This gave birth
to yet another dioid which will be discussed hereafter. For the event graph of
Figure 1, the following representation is obtained

y = H1u1 +H2u2 = δ8(γδ2)∗u1 + γδ5(γδ2)∗u2 (1)

The reader is referred to the second part of this paper to understand the meaning
of this expression.

Figure 1: An event graph

From these considerations we draw the following conclusion: event graphs are
linear systems on various dioids; therefore, there is an incentive to study these
algebraic structures in the most general manner, avoiding the use of properties
or axioms which are too specific of one particular dioid and which are not likely
to carry over other modelling approaches. It is one objective of this paper to
present such an abstract study in a sufficiently self-contained way, so as to serve
as a possible basis for further work in this direction. This does not mean that

3

all the results presented in the first part of this paper are original: a few of them
appear here for the first time, as far as we know, but most of them can be found
scattered in the literature on dioids (see [9, 7] and references therein), lattice
theory and lattice-ordered semigroups [8], and probably in other fields we are
not even aware of. It is a difficulty of this emerging theory of (some) DEDS to
have to appeal to mathematical tools which are not as familiar to engineers as
conventional linear algebra.

The second part of the paper will be devoted to discussing the various mod-
elling approaches of DEDS alluded to hereabove, to summarizing the earlier
developments on elements of system theory and to discussing their practical
significance. The reader should wait until this second part for finding more
concrete applications of the tools and results abstractly introduced in the first
part (or he may first scan the second part before comming back to the first). In
a conclusion, we try to discuss open problems and directions of future research
for this emerging theory.

Part I

Dioid theory

2 Axiomatic definition and basic properties

2.1 Dioid definition

Definition 1 A set D supplied with two inner operations denoted by ⊕ and
⊗ (called “sum” or “addition”, and “product” or “multiplication”) is a dioid if
the following axioms are fulfilled:

Axiom 1 (Associativity)

∀a, b, c ∈ D, (a⊕ b)⊕ c = a⊕ (b⊕ c) and (a⊗ b)⊗ c = a⊗ (b⊗ c)

Axiom 2 (Commutativity of addition)

∀a, b ∈ D, a⊕ b = b⊕ a

Axiom 3 (Distributivity)

∀a, b, c ∈ D, (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c)

This is right distributivity of product over sum. Since commutativity of product
is not a priori required, we do require left distributivity too.

Axiom 4 (Null and identity elements)

∃ε ∈ D : ∀a ∈ D, a⊕ ε = a

4

∃e ∈ D : ∀a ∈ D, a⊗ e = e⊗ a = a

Axiom 5 (Absorbing null element)

∀a ∈ D, a⊗ ε = ε⊗ a = ε

Axiom 6 (Idempotency of addition)

∀a ∈ D, a⊕ a = a

¤

Definition 2 (Commutative dioid) A dioid is commutative iff multiplica-
tion is commutative.

Notice In the sequel of this paper, the sign ⊗ will be most of the time omitted
(or replaced by a dot) as it is usual in conventional algebra.

Comments

(i) Some of the results hereafter do not depend on Axiom 5 but this axiom
seems to be necessary when moving from “scalar” to “matrix” dioids as
we shall see later on.

(ii) Axiom 6 prevents addition from being cancellative1 unless the dioid re-
duces to ε (a ⊕ a = a ⊕ ε would imply a = ε). Thus dioids cannot be
embedded into rings. Following Gondran and Minoux [9], we leave the
terminology “semiring” sometimes encountered in the literature for the
cancellative case.

(iii) Our definition of a dioid is somewhat less general than that of Gondran
and Minoux who require the following weaker substitute for Axiom 6

a = b⊕ c and b = a⊕ d =⇒ a = b (2)

which would be sufficient for stating Theorem 1 hereafter. In fact, all
dioids encountered in the second part of this paper satisfy Axiom 6. An
example of a dioid satisfying (2) but not Axiom 6 is (R+,+,×). However
this again corresponds to a cancellative addition and it is natural to embed
this dioid in (R,+,×), that is in our usual algebra.

(iv) Helbig [10], who himself refers to Zimmermann (see references therein),
defines an extremal algebra with axioms which are very close but stronger
than ours on two points:

• product is commutative;
1Cancellative means that a⊕ b = a⊕ c⇒ b = c.

5

• Axiom 6 is replaced by the stronger one

x⊕ y = either x or y.

With this new axiom, the order introduced in Theorem 1 hereafter be-
comes a total order. ¤

Actually, dioids are algebraic structures somewhere between linear algebra
and lattices. As a matter of fact, thanks to Axiom 6, it is possible to associate
a partial order relation to addition as shown by Theorem 1 hereafter. With this
order relation, a “sup-semilattice” is obtained. Modulo another completeness
assumption which involves infinite sums, a complete lattice can be obtained by
a classical construction which introduces a new inner operation. This is the
topic of the next section.

2.2 Lattice properties of dioids

Theorem 1 In a dioid, the following relation denoted by ≥ is a partial order
relation.

a ≥ b⇐⇒ a = a⊕ b (⇐⇒ ∃c : a = b⊕ c)
Two elements a and b in D always have an upper bound2, namely a ⊕ b and ε
is the minimal element of D. Moreover, multiplication is isotone for this order,
that is

a ≥ b =⇒ ∀c, ac ≥ bc
and the same for the left product.

With this order, the dioid is a sup-semilattice. A semilattice is complete
iff every subset3 has an upper bound. We now give a similar definition of
completeness in the context of dioids.

Definition 3 (Complete dioid) A dioid is complete iff it is closed for infinite
sums and Axiom 3 extends to infinite sums.

With the former requirement, the upper bound of any subset is simply the sum
of all its elements. The latter requirement in the above definition is natural and
it may be viewed as a continuity property of multiplication. There is a maximal
element of the dioid denoted by ∞ (the sum of all elements) which is absorbing
for addition (∞⊕ a =∞). The question arises of whether

∀a ∈ D, a 6= ε,∞⊗ a = a⊗∞ =∞ (3)

(of course ∞⊗ ε = ε). This can indeed be proved for Archimedian dioids.
2In lattice terminology, an upper bound is an element which is ≥ a and ≥ b and less than, or

equal to, every other element sharing the same property. It is unique when it exists.
3finite or infinite

6

Definition 4 (Archimedian dioid) A dioid is Archimedian iff the following
holds true

∀a, b ∈ D,∃c and d ∈ D : ac ≥ b and da ≥ b

Theorem 2 In a complete Archimedian dioid, (3) holds true.

Proof We give the proof for right multiplication by ∞. From Definition 4,
given a, for all b, there exists cb such that acb ≥ b. One has that

a∞ = a(
⊕
x∈D

x) ≥ a(
⊕
b∈D

cb) =
⊕
b∈D

acb ≥
⊕
b∈D

b =∞

¤
A complete dioid being a complete sup-semilattice, and since there is also

a minimal element ε, a new inner operation denoted by ∧, the lower bound4,
can be constructed so that the semilattice becomes a complete lattice. This is
a classical construction [8, pp. 175–176]. We briefly recall it. For every subset
C of D, we consider the set

E := {x ∈ D | x ≤ y,∀y ∈ C}

which is nonempty since it contains at least ε. The lower bound of C, say z,
is defined as the upper bound of E which exists by assumption. Note that z
belongs to E . As a matter of fact, E is bounded from above by all y ∈ C.
Since z is less than, or equal to, every element greater than E (by definition),
z ≤ y,∀y ∈ C q.e.d.

If C = {a, b, c, . . .}, z is denoted by a ∧ b ∧ c ∧ . . . In general, we use the
notation

∧
x∈C x. This operation ∧ is also associative, commutative, idempotent

and has ∞ as “null” element (∞ ∧ a = a,∀a). The following property, called
absorption law, holds true [8, p. 184]

∀a, b ∈ D, a ∧ (a⊕ b) = a⊕ (a ∧ b) = a (4)

Remark 1 One has the following equivalences

a ≥ b⇐⇒ a = a⊕ b⇐⇒ b = a ∧ b

However, this symmetry involves the lattice properties only. From the dioid
point of view, one should remember that multiplication is isotone in particular
because of Axiom 3. But distributivity will not hold true in general for mul-
tiplication over ∧ as one can check for the dioid M introduced in the second
part of this paper. This nonsymmetry is recalled by the notations: + and ×
are circled whereas ∧ is not. Nevertheless, since multiplication is isotone, it is
easy to check that

(a ∧ b)c ≤ (ac) ∧ (bc) (5)

and the same for left multiplication. ¤
4obeying the dual definition of the upper bound — see footnote 2

7

Notice that ∧ does not necessarily distribute over ⊕ or conversely. We can
however state that

∀a, b, c ∈ D, (a ∧ b)⊕ c ≤ (a⊕ c) ∧ (b⊕ c) (6)
(a⊕ b) ∧ c ≥ (a ∧ c)⊕ (b ∧ c) (7)

A lattice is distributive when equality holds true in (6)–(7). Indeed, equality in
either (6) or (7) implies the other equality too [8, p. 188]. The following two
theorems can also be found in [8, pp. 207 and 212 respectively].

Theorem 3 A necessary and sufficient condition for a lattice to be distributive
is that

a ∧ c = b ∧ c
a⊕ c = b⊕ c

}
=⇒ a = b

Theorem 4 Every multiplicative group G supplied with an order relation such
that multiplication is isotone and G is a sup-semilattice is a reticulated group
and a distributive lattice.

“Reticulated group” means in particular that multiplication distributes over
both the upper and the lower bounds (in our case, over ⊕ and ∧). Hence, in
this situation, all desirable properties hold true simultaneously. However, the
assumption that a dioid is a multiplicative group is rather strong and it will not
hold true for the dioid M considered in the second part.

Definition 5 (Distributive dioid) A dioid D is distributive iff it is complete
and

∀C ⊂ D, ∀a ∈ D, (
∧
c∈C
c)⊕ a =

∧
c∈C

(c⊕ a) (8)

(
⊕
c∈C

c) ∧ a =
⊕
c∈C

(c ∧ a) (9)

Notice that here distributivity is required to extend to infinite subsets too.
Moreover, both properties should be required now since one does not imply the
other [8, p. 189].

2.3 Matrix dioids

Starting from a “scalar” dioid D, consider square n × n matrices with entries
in D. Sum and product of matrices are defined conventionally after the sum
and product of scalars in D. The set of n× n matrices supplied with these two
operations is also a dioid which is denoted by Dn×n. The only point that deserves
some attention is the existence of an identity element. Thanks to Axiom 5, the
usual identity matrix with entries equal to e on the diagonal and to ε elsewhere
is the identity element of Dn×n. This identity matrix will also be denoted by e

8

and it will be clear from the context which e is meant. In the same way, the
null n× n matrix is denoted by ε.

Notice that if D is a commutative dioid, this will not be the case for Dn×n in
general. In the same way, if D is Archimedian, Dn×n will not be so in general.
But since addition of matrices simply involves the addition of similar entries, it
is clear that Dn×n is complete (respectively distributive) whenever D is so. Also
A ≥ B ⇐⇒ {aij ≥ bij , i = 1, . . . , n, j = 1, . . . , n} and (A ∧B)ij = aij ∧ bij .

It is sometimes useful to think of A ∈ Dn×n as representative of a graph
with n nodes and with a directed arc from node i to node j weighted by Aji if
this entry of A is different from ε, and with no arc otherwise. The product (in
D) of the weights of arcs composing a path or a circuit is called weight of this
path or circuit. The number of arcs is called the length of the path or circuit.
The entry (j, i) of some power Ap of A indicates the maximal weight over all
paths of length equal to p and going from i to j. “Maximal” of course refers to
the upper bound of the weights of these paths for the order of D. It is worth
noticing that this interpretation holds true because non existing arcs received a
weight equal to ε, so that paths that would make use of this non existing arcs
are also weighted by ε thanks to Axiom 5, and thus they cannot be maximal.

3 Linear equations in complete dioids

The most general linear equation in a dioid is

ax⊕ b = cx⊕ d (10)

where a, b, c, d ∈ D or Dn×n and x is the unknown in the same dioid. Throughout
this section, D is supposed to be a complete dioid. Hereafter, we only consider
particular subclasses of this general equation which will prove useful in the
second part of this paper.

3.1 The equation ax⊕ b = c and residuation

In D (or Dn×n), we first consider the equation in x

ax⊕ b = c (11)

This equation does not always admit a solution but it may also have several or
an infinity of solutions. This may as well happen in usual linear algebra when,
for example, a is a non invertible matrix. Pseudo-inverses are then considered.
Here, a first obvious necessary condition for existence is that b ≤ c. It is met
in particular if b = ε. Even in this case, existence and uniqueness are not
guaranteed. In order to recover existence and uniqueness when b ≤ c, we shall
modify the concept of “solution” to (11) and we shall retain that of “greatest
subsolution”.

9

Definition 6 A subsolution of (11) is an x such that ax⊕ b ≤ c.

Theorem 5 The set of subsolutions of (11), say S, is not empty iff b ≤ c. Then
the upper bound of S belongs to S and it is also the greatest subsolution of

ax = c (12)

Proof The condition b ≤ c is an immediate consequence of (11) and Theorem
1. Conversely, if it is satisfied, then S contains at least ε thanks to Axiom 5.
Let z be the upper bound of S. The following proves that z belongs to S

az = a(
⊕
y∈S

y) =
⊕
y∈S

ay ≤ c

Finally, we prove that S is identical to S′ which is defined as the set of subsolu-
tions of (12). On the one hand, y ∈ S ⇒ ay⊕ b ≤ c⇒ ay ≤ c⇒ y ∈ S′. On the
other hand, y ∈ S′ ⇒ ay ≤ c ⇒ ay ⊕ b ≤ b ⊕ c = c since {b ≤ c ⇔ c = c ⊕ b}.
Hence y ∈ S. ¤

From now on, we thus limit ourselves to the study of equation (12).

Definition 7 (Residuation) The (left) residue of c by a, denoted by a\c, is
defined as the greatest subsolution of (12).

The terminology comes from lattice-ordered semigroups (see [8, pp. 220]).

Remark 2 Since we do not assume that D is commutative, it is possible to
consider equations of the form xa = c and the corresponding right pseudo-
inverse solution would be denoted by c/a.

Remark 3 It should be kept in mind that one cannot in general associate a
particular element of D (supposedly denoted by a[) to the mapping c 7→ a\c, in
such a way that a\c = a[⊗ c, for the reason that that mapping is not “linear”
in D as we are going to see it in the study of the new operation \.

Theorem 6 If (12) has a true solution, then a\c is also a solution and it is the
greatest one.

The proof is straightforward. As a corollary, if a−1 exists, then the solution is
unique and a\c = a−1c.

Theorem 7 The expression a\b is nonincreasing as a function of a and nonde-
creasing as a function of b. Moreover the following inequalities and equalities
hold true

a(a\b) ≤ b (13)

(a\a) ≥ e (14)

10

a(a\a) = a (15)

e\a = a (16)

ε\a =∞ (17)

(a\b)c ≤ a\(bc) (18)

a\(b\c) = (ba)\c (19)

(a\b)⊕ (a\c) ≤ a\(b⊕ c) (20)

(a\b) ∧ (c\b) = (a⊕ c)\b (21)

(a\b) ∧ (a\c) = a\(b ∧ c) (22)

(a\b)⊕ (c\b) ≤ (a ∧ c)\b (23)

Proof Most of the inequalities and of some equalities are readily derived from
the very definition of residuation. We only give a proof for the non obvious
equalities. For (15), two opposite inequalities are derived from (13) and (14).

For (19), let x = b\c, y = a\x, z = (ba)\c. On the one hand, {bx ≤
c and ay ≤ x} ⇒ {bay ≤ bx ≤ c} ⇒ {y ≤ z}. On the other hand,
{baz ≤ c} ⇒ {az ≤ x} ⇒ {z ≤ y}.

For (21), let x = (a⊕ c)\b, y = a\b, z = c\b. On the one hand, {(a⊕ c)x ≤
b} ⇒ {ax ≤ b and cx ≤ b} ⇒ {x ≤ y and x ≤ z} ⇒ {x ≤ y ∧ z}. On the other
hand, {ay ≤ b and cz ≤ b} ⇒ {a(y∧z) ≤ b and c(y∧z) ≤ b} ⇒ {(a⊕c)(y∧z) ≤
b} ⇒ {y ∧ z ≤ x}.

For (22), let x = a\b, y = a\c, z = a\(b ∧ c). On the one hand, {ax ≤
b and ay ≤ c} ⇒ {a(x ∧ y) ≤ ax ∧ ay ≤ b ∧ c} ⇒ {x ∧ y ≤ z}. On the other
hand, {az ≤ b∧c} ⇒ {az ≤ b and az ≤ c} ⇒ {z ≤ x and z ≤ y} ⇒ {z ≤ x∧y}.
¤

Comments (15) is a familiar equality for pseudo-inverses; (16) says that e is
a neutral element for residuation; (18) and (20) shows that a\b is not a linear
function of b; (22) means that \ is distributive over ∧. When a−1 and b−1 exist,
an interesting consequence of (21) is the formula5

(a⊕ b)\e = a−1 ∧ b−1 (24)

In a (complete) commutative dioid, again with (21), one has that

(ab)/(a⊕ b) = (a⊕ b)\(ab) = (a\(ab)) ∧ (b\(ba))
≥ ((a\a)b) ∧ ((b\b)a) from (18)
≥ b ∧ a from (14)

but obviously equalities hold throughout when a−1 and b−1 exist. ¤
5Recall that −max(a, b) = min(−a,−b).

11

3.2 Matrix residuation

Till now, all that have been said about residuation applies to a complete “scalar”
dioid D or to a “matrix” dioid Dn×n. The following theorem relates the residue
of B ∈ Dn×n by A ∈ Dn×n (also denoted by A\B) to the scalar residuation.

Theorem 8 Let A,B ∈ Dn×n, then

A\B = AT ¯B (25)

where AT denotes the transpose of A and ¯ is a new matrix product where the
operations ⊕ and ⊗ of D are replaced respectively by ∧ and \ of D (recall that
\ distributes over ∧ from (22)).

Proof We consider n = 2 without loss of generality. Moreover, it is obvious
that each pair of corresponding columns of X = A\B and B can be considered
independently of other pairs. For example, the first column X.1 must satisfy

A11X11 ⊕A12X21 ≤ B11 (26)
A21X11 ⊕A22X21 ≤ B21 (27)

which implies

A11X11 ≤ B11 and A21X11 ≤ B21

A12X21 ≤ B11 and A22X21 ≤ B21

or

X11 ≤ Y11 := (A11\B11) ∧ (A21\B21)
X21 ≤ Y21 := (A12\B11) ∧ (A22\B21)

On the other hand, Y11 and Y21 also verify (26)-(27), which means that indeed
Y.1 = X.1 by definition of X. Let us check this for (26) for example

A11[(A11\B11) ∧ (A21\B21)]⊕A12[(A12\B11) ∧ (A22\B21)] ≤ A11(A11\B11)⊕A12(A12\B11)
≤ B11 from (13)

This completes the proof. ¤

This theorem extends a result provided by Cuninghame-Green [7] in the context
of the dioid (R ∪ {−∞,+∞},max,+) (where ∧ = min).

3.3 A particular transformation

We now come back to an arbitrary (complete) dioid D and we show an inter-
esting transformation which, in some situation, reduces residuation to multipli-
cation. An application of this will be encountered in the second part of this

12

paper. Let ϕ be an arbitrary but fixed element in D and let us consider the
transformation

∀a ∈ D, ã := a\ϕ (28)

Notice that ã⊕ b = ã ∧ b̃ from (21) which shows that this transformation is
an homomorphism from the sup-semilattice (D,⊕) to the inf-semilattice (D,∧).
As a direct consequence of (19) and (28), we also have that

∀a, b ∈ D, b̃a = a\b̃ (29)

Let us interpret x̃ as a way of “coding” x. We see that, if we have to perform the
left residuation of the “coded” b by a, we can rather multiply b itself by a to the
right and then code the result. Of course, the process of coding itself involves
residuation, but it may be quite simple for elements (at the “denominator”)
with can be written as a sum of invertible elements thanks to (21) (this is what
happen in the second part of this paper). However, even in this case, this does
not mean that we can always replace residuation by product since there may be
a problem with “decoding”: the transformation is not a bijection in general.

Everything above applies as well to a matrix dioid Dn×n. Let us however
discuss the relationship between scalar and matrix coding. If a scalar coding
has been defined by some ϕ, we define the n× n matrix

Φ =


ϕ ∞ . . . ∞
∞ ϕ

...
...

. . .
...

∞ ϕ

 (30)

and we define X̃ as X\Φ. Using (25), it is easy to check that (say, for n = 2)

X =
(
a b
c d

)
=⇒ X̃ =

(
ã c̃

b̃ d̃

)
where of course e.g. b̃ corresponds to scalar coding of b with ϕ. Notice the
transposition in the formula above: coding a column vector amounts to coding
its entries and transposing, the result being a row vector.

Finally, as a consequence of (25) and (29), we have that

B̃A = A\B̃ = AT ¯ B̃

3.4 The equation x = ax⊕ b and the “star” operation

We consider the following implicit equation in x

x = ax⊕ b (31)

13

Let
a∗ := e⊕ a⊕ a2 ⊕ · · · (32)

Interesting, and easy to check, properties of this star operation are

(a∗)p = a∗,∀p ∈ N and (a∗)∗ = a∗ (33)

Let also a+ := a⊗ a∗ and notice that

a∗ = e⊕ a+ and a∗ ≥ a+ (34)

Theorem 9

(i) a∗b is the least solution of (31).

(ii) For all solution x, one has that x = a∗x.

Proof

(i) Clearly, if x is a solution, x ≥ b and x ≥ ax. On the one hand, apx ≥
apb. On the other hand, x ≥ ax ≥ . . . ≥ apx. Hence, x ≥ apb, thus
x ≥

⊕∞
p=0 a

pb = a∗b. Finally, it is straightforward to check that a∗b is also
a solution.

(ii) From (31), one gets that x = a(ax⊕ b)⊕ b = . . . = apx⊕ (e⊕ · · · ⊕ ap−1)b
for all p. Summing up all these equalities for p ∈ N yields x = a∗x⊕ a∗b.
But from (i) above, a∗x ≥ a∗b or a∗x ⊕ a∗b = a∗x which completes the
proof. ¤

Theorem 9 answers the issue of existence of solutions to (31) in complete dioids.
About uniqueness, we observe that if the homogeneous equation

x = ax (35)

has a solution y 6= ε, yz is also a solution of (35), ∀z ∈ D, and obviously a∗b⊕yz
is a solution of the nonhomogeneous equation (31). In usual linear algebra, it is
well known that all solutions of the nonhomogeneous equation are obtained by
adding all solutions of the homogeneous equation to a particular solution of the
nonhomogeneous. Here, for such a result to hold true, the “particular solution”
has to be the least one (namely a∗b) because “adding” also means “increasing”.

Theorem 10 Let D be a distributive dioid. Then, if x is a solution of (31), it
can be written as x = y ⊕ a∗b where y is a solution of (35).

Proof For any given solution x of (31), we consider the subset Cx := {c | x =
c⊕ a∗b}. If c ∈ Cx, then ac ∈ Cx too. As a matter of fact, x = c⊕ a∗b ⇒ ax =
ac⊕ a+b ⇒ x = ax⊕ b = ac⊕ a∗b from the equality in (34). Also, if c, d ∈ Cx,
then c⊕d ∈ Cx since x = x⊕x = c⊕d⊕a∗b. Therefore, if c ∈ Cx, then a∗c ∈ Cx
too.

14

Let now z :=
∧
c∈Cx c. Since D is distributive, z ⊕ a∗b =

∧
c∈Cx(c⊕ a

∗b) = x,
which means that z ∈ Cx. Hence, az ∈ Cx too. From the very definition of z, it
follows that z ≤ az and thus a∗z ≤ a+z. But the inequality in (34) shows that
indeed y = ay if we set y := a∗z. To complete the proof, notice that y ∈ Cx, as
observed earlier. ¤

3.5 The homogeneous equation x = ax

It is possible to characterize all solutions of (35) in the situations described by
Theorems 11 and 12 hereafter. Let us first introduce a new notation for an
invertible a, that is when there exists a−1 such that a⊗ a−1 = a−1 ⊗ a = e.

a# := a∗ ⊗ (a−1)∗ = (a⊕ a−1)∗ = a∗ ⊕ (a−1)∗ (36)

These equalities can be checked easily as the following additional properties

a⊗ a# = a∗ ⊗ a# = a# (37)

Theorem 11 (Scalar case) Consider Equation (35) with a, x ∈ D, where D
is a distributive and commutative dioid. Moreover, it is assumed that a can be
written as a finite sum of invertible elements {ak | k = 1, . . . , p}. Then, any
solution x of (35) is of the form

x =
p⊕

k=1

a#
k yka

∗ (38)

where the yk’s are arbitrary elements of D.

Proof The proof is by induction on the integer p. For p = 1, if x = ax, then
x = a∗x, but also x = a−1x, thus x = (a−1)∗x, and finally x = a#x. Conversely,
if x = a#y for any y, from (37) it follows that x = ax. Notice that since
a# = a#a∗, the theorem is proved for p = 1.

Assume that the statement of the theorem is true up to some value p− 1. If
x = (ap ⊕ b)x where b =

⊕p−1
k=1 ak, from Theorem 9-(ii), one has that x = a∗px.

Now, using Theorem 10 and this Theorem 11 for p = 1 (already proved), one
has that x = a∗bx ⊕ a#

p yp for some yp ∈ D. Using commutativity and the fact
that x = a∗px, one gets that x = bx ⊕ a#

p yp. Again using Theorem 10 and the
induction assumption, one concludes that x = b∗a#

p yp⊕ (
⊕p−1

k=1 a
#
k ykb

∗) for some
yk’s. The desired formula (38) is obtained by multiplying this last equality by
a∗p, by remembering that x = a∗px, and by noticing that a∗ = a∗pb

∗ from formula
(49) established independently later on.

Conversely, if x is given by (38), we must show that x = ax. Actually, it
suffices to prove this for any x corresponding to all yk null, except one, say yi
taken equal to e, since then, by linearity, the statement will hold true for all
linear combinations of such x’s. If x = a#

i a
∗, then ax = a#

i a
+ ≤ x from (34).

15

On the other hand, ax ≥ aix but aix = x from (37), hence ax ≥ x, and finally
ax = x. ¤

We are now going to give an extension of this theorem in the situation when
a is a n× n matrix, denoted now by A ∈ Dn×n, and x is a n× 1 column vector
denoted by ~x. Notice that we could as well consider the unknown X ∈ Dn×n
since, in equation X = AX, there is no interaction between the columns of X
which may thus be considered separately as in

~x = A~x (39)

Notice also that Dn×n is not commutative in general, and therefore Theorem 11
cannot be applied directly.

Theorem 12 (Vector case) Consider the vector equation (39) on a dioid D
which is subject to the same assumptions as in the previous theorem. Moreover,
it is assumed that each entry of A which is not equal to ε, say Aij , can be written
as a finite sum of invertible elements

⊕pij
k=1 Aijk. A directed arc from node j to

node i is associated to each such Aijk, with this Aijk as the weight. This arc
is in parallel with the other arcs from j to i. Let Γ(A) (or simply Γ) be the
set of elementary circuits of this graph. For all circuit κ ∈ Γ, the weight wκ is
invertible. Then, any solution ~x of (39) is of the form

~x =
⊕
κ∈Γ

w#
κ yκ(A

∗).iκ (40)

where the yκ’s are arbitrary elements of D, (A∗).iκ is the ithκ column of A∗ and
iκ is the number of any node belonging to the circuit κ.

The proof of this theorem is, in its present form, rather lengthy and it will be
skipped here. Let us just explain why an arbitrary node of the circuit κ may be
picked up.

Lemma 1 Let i and j be two nodes belonging to the same circuit of weight w
(assumed invertible). Then

w#A∗.j = w#A∗ijA
∗
.i and w#A∗.i = w#A+

.i

which means in particular that two columns of w#A∗ (or of w#A+) correspond-
ing to nodes on the same circuit of weight w are proportional.

Proof From A∗ = A∗A∗, we have that (A∗)ki ≥ (A∗)kj(A∗)ji for all i, j, k. Hence,
letting k vary

(A∗).i ≥ (A∗)ji(A∗).j (41)

On the other hand, if i and j are on the same circuit of weight w, we certainly
have that (A∗)ji(A∗)ij ≥ w, hence from (37)

w#(A∗)ji(A∗)ij ≥ w# (42)

16

Then

w#(A∗)ij(A∗).i ≤ w#(A∗).j from (41),
inverting the roles of i and j

≤ w#(A∗)ji(A∗)ij(A∗).j from (42)
≤ w#(A∗)ij(A∗).i from (41)

Therefore equality holds throughout, proving the former statement.
As for the latter, observe that A∗ and A+ may differ only on the diago-

nal. Obviously, if node i is on a circuit of weight w, then (A+)ii ≥ w, hence
w#(A+)ii ≥ w# or w#(A+)ii = w# ⊕ w#(A+)ii = w#(e ⊕ (A+)ii) = w#(A∗)ii
which completes the proof. ¤

4 Rational closure and rational representations

4.1 Rational closure and rational calculus

We consider a complete dioid D and a subset E of D which contains ε and e.
Considering Equation (31) with data a and b in E , the least solution a∗b exists
in D but not necessarily in E .

Definition 8 (Rational closure) The rational closure of E (denoted by E∗) is
the smallest subset of D which contains E and all finite sums, products and star
operations over its elements. A subset E ⊂ D (containing ε and e) is rationally
closed iff E∗ = E .

The definition of E∗ implies that E∗ is a subdioid of D since it is stable for
addition and multiplication. Obviously, a∗b ∈ E∗ when a, b ∈ E . Observe also
that (E∗)∗ is the same as E∗.

Let us go now from “scalars” to matrices. On the one hand, we can consider
the subset En×n ⊂ Dn×n of n × n matrices with entries in E and its rational
closure (En×n)∗. This is a subdioid of Dn×n. On the other hand, we can consider
the subdioid (E∗)n×n ⊂ Dn×n made of n× n matrices with entries in E∗.

Theorem 13 The subdioid (En×n)∗ is included in the subdioid (E∗)n×n.

This theorem will be improved later on (the inclusion is in fact an equality),
but it is stated here in this weaker form because this result will be needed soon.
The proof is based on the following technical lemma.

Lemma 2 For a matrix A partitioned into four blocks, one has that

A∗ =
(
a b
c d

)∗
=
(
a∗ ⊕ a∗b(ca∗b⊕ d)∗ca∗ a∗b(ca∗b⊕ d)∗

(ca∗b⊕ d)∗ca∗ (ca∗b⊕ d)∗

)
(43)

17

Outline of proof Remember that the star operation is related to the least
solution of an implicit equation of type (31). It is possible to write down the
block-system of equations corresponding to X = AX ⊕ e (remember that e is
the identity matrix) and to solve it in a progressive manner, as in Gaussian
elimination. Placing the partial solutions already obtained in the next block-
equation preserves the property of least solution since all operations involved
are isotone. Formula (43) corresponds to solving blocks (1,1) and (1,2) and then
(2,1) and (2,2). ¤

Notice that another path to solve the system could be (2,1) and (2,2) and then
(1,1) and (1,2) which is equivalent to interchanging the role of a (resp. b) and
d (resp. c). This observation leads to the identity

(ca∗b⊕ d)∗ = d∗ ⊕ d∗c(bd∗c⊕ a)∗bd∗ (44)

Proof of Theorem 13 The sums and products of matrices in En×n obviously
belong to (E∗)n×n. To prove that (En×n)∗ is included in (E∗)n×n, it remains
to prove that we do not get outside of this latter set when performing star
operations over elements of En×n. This is done by induction over the dimension
n. The statement holds true for n = 1. Assuming it holds true up to some n,
let us prove it for n + 1. It suffices to consider a partitioning of an element of
E (n+1)×(n+1) into blocks such that a is in En×n. By inspection of (43), and using
the induction assumption, the proof is easily completed. ¤

4.2 Rational representations

We are now going to establish some results on representations of rational el-
ements. For reasons that will become more apparent later on, we distinguish
two particular subsets of E , namely B and C. There is no special requirement
about them except that we always assume that they both contain ε and e. In
particular, we allow B and C to be overlapping and even identical.

Theorem 14 E∗ coincides with the set of elements x which can be written as

x = CxA
∗
xBx (45)

where Bx is an nx× 1 matrix with entries in B, nx being an arbitrary but finite
integer number, Cx is a 1 × nx matrix with entries in C and Ax is an nx × nx
matrix with entries in E .

For short, a representation of x like (45) will be called a (B, C)-representation.

Proof Let S be the subset of all elements of D having a (B, C)-representation.
S includes E because of the following identity

x =
(
e ε

)(ε x
ε ε

)∗(
ε
e

)
(46)

18

Suppose that we have proved that S is stable by addition, multiplication and
star operation (what we postpone to the end of this proof), then S is equal to
its rational closure S∗. Since S includes E , S∗ includes E∗. On the other hand,
from Theorem 13, we see that A∗x has its entries in E∗. From (45), it is thus
clear that S is included in E∗. Finally, we conclude that S = S∗ = E∗.

For the proof to be complete, we have to prove that considering two elements
of S, say x and y, which, by definition, have an (B, C)-representation, x ⊕ y,
x ⊗ y and x∗ also have a (B, C)-representation. This is a consequence of the
following formulas

CxA
∗
xBx ⊕ CyA∗yBy =

(
Cx Cy

)(Ax ε
ε Ay

)∗(
Bx

By

)

CxA
∗
xBx ⊗ CyA∗yBy =

(
Cx ε ε

) Ax Bx ε
ε ε Cy
ε ε Ay

∗ ε
ε
By


(CxA∗xBx)∗ =

(
ε e

)(Ax Bx

Cx ε

)∗(
ε
e

)
These formulas are proved by making repeated uses of (43). ¤

Theorem 15 The subdioids (En×n)∗ and (E∗)n×nare identical. Consequently,
(E∗)n×n is rationally closed.

Proof The inclusion in one direction has been stated in Theorem 13. Therefore,
we need only to prove the reverse inclusion. Let x ∈ (E∗)n×n and assume that
n = 2 for the sake and simplicity and without loss of generality. Then x can be
written as

x =
(
x1 x2
x3 x4

)
with entries xi ∈ E∗. Each xi has a (B, C)-representation with matrices A,B,C
indexed by a subscript i, Ai being of dimension ni × ni. We have that

x =
(
C1A

∗
1B1 C2A

∗
2B2

C3A
∗
3B3 C4A

∗
4B4

)

=
(
C1 C2 ε ε
ε ε C3 C4

)
A1 ε ε ε
ε A2 ε ε
ε ε A3 ε
ε ε ε A4


∗

B1 ε
ε B2
B3 ε
ε B4


The inner dimension is

∑4
i=1 ni which is augmented to the next multiple of 2

(and more generally of n) by adding enough rows and columns of ε’s in the
matrices. Then, since the outer dimension is 2 and the inner dimension is now
a multiple of 2, by appropriately partitioning these matrices into 2× 2 blocks,

19

one can consider this representation as a (B, C)-representation, but with 2× 2-
dimensional entries. This proves, applying Theorem 14 in the dioid D2×2, that
x belongs to (E2×2)∗. ¤

Comments

(i) The inner dimension nx for any x ∈ E∗ in a representation like (45) depends
of course on the subsets B and C in which the matrices Bx and Cx are
allowed to take their entries. Unfortunately, for fixed B and C, we did not
solve the problem of the “minimal” representation. Therefore, we do not
know how to give to this nx an intrinsic meaning. But it may be expected
— see hereafter — that the larger B and C are, the smaller nx can be.
As an extreme situation, let us consider B = C = {ε, e}. Indeed, this is
the minimal subsets we may consider (recall that B and C must at least
includes ε and e). “The” corresponding nx will then be “maximal” and it
could be a canonical measure of “complexity” of the rational element x

(ii) More generally, let us consider a family of nested subsets B1 ⊂ · · · ⊂ Bi ⊂
· · · and C1 ⊂ · · · ⊂ Ci ⊂ · · ·. For a given x ∈ E∗, we get a corresponding
family of (Bi, Ci)-representations (whose inner dimensions are denoted by
ni). Obviously, a (Bi, Ci)-representation is also a (Bj , Cj)-representation if
j > i (hence ni ≥ nj , speaking of hypothetical minimal representations in
all cases). On the other hand, it is interesting to see how one can pass
from a (Bj , Cj)- to a (Bi, Ci)-representation. Let (Aj,Bj, Cj) be the former
representation. Then, Bj (resp. Cj) can be split up into Bi ⊕ B′ (resp.
Ci ⊕ C ′), such that Bi (resp. Ci) has its entries in Bi (resp. Ci)6. The
following formula can be checked using (43)

CjA
∗
jBj = (Ci ⊕ C ′)A∗j(Bi ⊕B′)

=
(
Ci ε e

) Aj B′ ε
ε ε ε
C ′ ε ε

∗ Bi

e
ε


Observe that the last expression is a (Bi, Ci)-representation. ¤

4.3 Yet other rational representations

So far, we have considered representations of elements of E∗ by triples of matrices
(A,B,C), such that the entries of A are taken in E , whereas those of B (resp.
C) are allowed to lie in an arbitrary subset B (resp. C) of E containing at least
{ε, e}. Recall that B and C need not be distinct nor even disjoint.

For motivations that are to be found in the second part of this paper, we
are going to consider other possibilities for the entries of A,B,C. Namely, in

6Bi and Ci may as well be null matrices.

20

addition to B and C on which assumptions remain the same, we consider a
“covering” (F ,G) of E (that is E = F ∪ G but F ∩ G needs not be empty). We
always assume that ε, e ∈ F if we want to consider F∗. Generally speaking,
considering two subsets S and F , we introduce the following notations

F∗ ⊗ S := {x | x =
p⊕
i=1

aibi for some finite p ∈ N, ai ∈ F∗, bi ∈ S}

The notation S ⊗ F∗ is similarly defined. Notice that ε belongs to the subsets
so defined.

Theorem 16 E∗ coincides with the set of elements x which can be written as
in (45) but with entries of Ax lying in F∗ ⊗ G, those of Bx in F∗ ⊗ B and those
of Cx in C. We call this an “observer” representation.

Alternately, there exist other representations such that the entries of Ax are
in G ⊗ F∗, those of Bx are in B and those of Cx are in C ⊗ F∗. We call these
“controller” representations.

Proof Only the former statement will be proved. The latter can be proved simi-
larly. We first prove that if x ∈ E∗, then x does have an observer representation.
From Theorem 14, we know that x has a (B, C)-representation. Consider the
matrix A of this (B, C)-representation7 which can be written AF ⊕AG such that
AF contains only elements of F and AG only elements of G 8. Therefore, we
have x = C(AF ⊕AG)∗B. An observer representation is derived by making use
of the identity

(c⊕ d)∗ = (d∗c)∗d∗ (47)

which is a direct consequence of (44) (let a = ε and b = e therein).
Conversely, if x has an observer representation (A,B,C), then x ∈ E∗. As a

matter of fact, it is easy to realize that the entries of A,B,C lie in subsets of
E∗. Recall also that (E∗)∗ = E∗. The conclusion follows. ¤
Remark 4 Another form of (47) is obtained by letting a = ε and c = e in (44)

(b⊕ d)∗ = d∗(bd∗)∗ (48)

5 Rational representations in commutative
dioids

In the previous section, we obtained representations of elements of E∗ involving
a single star operation, but on a square matrix of arbitrary dimension. In
(complete) commutative dioids (Definition2), we are going to see that rational
elements can be represented with a single level of star on “scalar” elements.

7We drop the subscript x.
8If F ∩ G is not empty, entries of A in the intersection may be arbitrarily put into either AF or

AG , or even in both matrices thanks to Axiom 6.

21

Lemma 3 In a complete commutative dioid D, one has that

∀a, b ∈ D, (a⊕ b)∗ = a∗b∗ (49)

Certainly the simplest way of proving this formula is by direct calculation using
the very definition (32) of star and commutativity. But we are going to indicate
how to get it as a corollary of a result which is worth mentioning. This result
is stated without proof (the proof is similar to that of Theorem 9 albeit a bit
more involved).

Theorem 17 In a complete (not necessarily commutative) dioid D, consider
the following implicit equation in the unknown x

x = ax⊕ xb⊕ c (50)

Then, a∗cb∗ is the smallest solution of (50).

If commutativity is assumed, clearly formula (49) follows. With this formula at
hand, identity (43) can be given a new useful form, at least when d is a scalar
(i.e. a 1× 1 block).

Lemma 4 In a commutative dioid, for a matrix A partitioned into four blocks
where A22 = d is 1× 1, one has that

A∗ =
(
a b
c d

)∗
=
(
a∗ ⊕ d∗a∗bc(a⊕ bc)∗ d∗(a⊕ bc)∗b

d∗c(a⊕ bc)∗ d∗ ⊕ d∗c(a⊕ bc)∗b

)
(51)

Proof Since d and ca∗b are scalars, using (49), one gets that (ca∗b ⊕ d)∗ =
(ca∗b)∗d∗. Moreover, from (44) with d = ε, it comes that (ca∗b)∗ = e⊕c(a⊕bc)∗b.
With these two equalities, the lower right-hand block of (51) can be derived from
the corresponding block of (43).

Considering now the upper right-hand block of (43), a∗b(ca∗b ⊕ d)∗ =
d∗a∗b(e ⊕ c(a ⊕ bc)∗b), from an equality above and (49). Then, with (48),
(a⊕ bc)∗ = a∗(bca∗)∗. Hence

a∗b(ca∗b⊕ d)∗ = d∗a∗(e⊕ bca∗(bca∗)∗)b
= d∗a∗(bca∗)∗b
= d∗(a⊕ bc)∗b

Similar calculations yield the other blocks of (51). ¤

Theorem 18 Let A ∈ Dn×n where D is a (complete) commutative dioid. Then
all entries of A∗ are finite sums of the form

⊕
i ai(bi)

∗, where ai is a finite product
of entries of A and bi is a finite sum of weights of circuits of the graph associated
to A (see Section 2.3).

22

Proof The proof is by induction. The statement is true for n = 1. Suppose
that it holds also true up to n − 1. Consider the partitioning (51) of A with d
being 1 × 1. Notice that to matrix bc is associated a graph whose all circuits
are of length 2, starting from one of the first n− 1 nodes, going to the nth node
and coming back to the initial node. These of course are among the circuits
of the graph associated to A. Considering the formula (51), the proof is easily
completed by noticing that products of stars of “scalar” elements are converted
to stars of sums of these elements using (49). ¤

Comments The claim of this theorem is essentially that the stars contained in
the entries of A∗ are only those of weights of circuits of the associated graph.
This result is intuitively appealing, given the interpretation of the entries of the
powers Ap of A (see Section 2.3) and the fact that for p ≥ n, the paths of length
p necessarily contain circuits. ¤

Theorem 19 Let E be a subdioid of the commutative dioid D, that is a subset
of D containing ε and e and which is stable for finite sums and products of its
elements. Then, E∗ coincides with the set of elements x which can be written
as

x =
mx⊕
i=1

ai(bi)∗ (52)

where mx is an arbitrary finite integer and ai, bi ∈ E .

This is a straightforward consequence of Theorems 14 and 18.

6 Equivalence modulo z in commutative dioids

Considering a commutative dioid D, we are going to consider the quotient of
this dioid by an equivalence relation of a particular form which will appear to
be of special interest in the second part of this paper.

Definition 9 Let a, b, z ∈ D, a commutative dioid. We say that a and b are
equivalent (or equal) modulo z, which is denoted by a ≡ b (mod z) iff az∗ =
bz∗.

Theorem 20 a ≡ b (mod z) is an equivalence relation. Let [a]z denote the
equivalence class of a. The equivalence relation is compatible with the dioid
structure, that is [a⊕ b]z and [a⊗ b]z depend only on [a]z and [b]z (and not on
the particular a and b in these classes). Then, we can set

[a]z ⊕ [b]z := [a⊕ b]z and [a]z ⊗ [b]z := [a⊗ b]z

which defines a (commutative) dioid structure for the quotient denoted by D/z.
Finally, each equivalence class [a]z has a greatest element which is equal to az∗.

23

Proof The relation is obviously reflexive, symmetric and transitive. Because of
Axiom 3, it is easy to see that [a⊕b]z can be defined after any representatives of
[a]z and [b]z. The same holds true for multiplication because (az∗)(bz∗) = (ab)z∗

using associativity and commutativity of product and the fact that (z∗)2 = z∗.
It is easy to check that D/z is a dioid with the above mentioned sum and
product. Finally, since z∗ ≥ e, az∗, which does not depend on the particular
representative a of [a]z by definition, is not less than every such a. ¤

Comments

(i) Because of the last statement of Theorem 9, D/z can be identified to the
dioid denoted by z∗D which consists of the set of elements obtained by
multiplying all the elements of D by z∗. Whenever z ≤ e, then z∗ = e and
D/z = D.

(ii) More generally, thanks to (49), we have the commutative diagram of Fig-
ure 2. This implies in particular that D/(y⊕ z) is equal to D/z whenever
z ≥ y. ¤

D/y

D D/z

D/(y ⊕ z)

(mod z)

(mod [z]y)

(mod y) (mod [y]z)

?

-

-
?

Z
Z
Z
Z
ZZ

Z
Z
Z
ZZ~

(mod y ⊕ z)

Figure 2: Commutative diagram

Remark 5 Since Dn×n is not a commutative dioid in general, there is no point
to consider Dn×n/z with z ∈ Dn×n. But we may of course speak of the matrix
dioid (D/z)n×n with z ∈ D. ¤

24

Part II

System theory

7 Event graphs, daters and counters

7.1 Timed event graphs

Event graphs are a particular class of Petri nets in which there is a single
transition upstream, and a single transition downstream every place. See an
example on Figure 1.

Notice In general, a place between transitions x (upstream) and y (down-
stream) will be labelled y|x (observe that y is mentioned before x). This may
be ambiguous if there are several arcs in parallel from x to y, in which case an
additional index (e.g. numbering these parallel places from left to right) would
be needed. ¤

Situations as those of Figure 3-(a)-(b) are not allowed in event graphs. Case (b)
corresponds to a non deterministic situation since it remains to decide whether
tokens available in such a place are to be “consumed” by the left-hand or by the
right-hand transition. Case (a) poses a kind of dual problem: tokens arriving in
such a place may come from the right-hand or from the left-hand transition. In
[5], it is shown that the resulting equations (analogous to those shown later on)
involves a kind of “inf-convolution” over all past possibilities of arrivals of token
at the place. This would yield nonlinear equations and an infinite dimensional
state vector in the theory to be discussed hereafter.

To summarize, event graphs do not allow the modelling of “or”, and in
particular of competition (case (b)). But they allow the modelling of “and” as
reflected by “forks” and “joins” at transitions in Figure 1. For example, the
join at transition y implies that tokens must be available in places y|x3 and
y|x2 for transition y to be fired (this is a synchronization constraint). It is
assumed that exacly one token is consumed in each upstream place when the
transition is fired. Considering e.g. the fork at transition x1, tokens are created
in places x2|x1 and x3|x1 whenever transition x1 is fired (this may represent
the splitting of a part into subparts in a workshop, or a message broadcast in
a communication network for example). It is assumed that exactly one token is
created in each downstream place by one firing of the transition.

An important property of event graphs is that the number of tokens is con-
stant in each circuit all along the life of the system. In particular, if a circuit
has no token in the initial marking (represented by dots in Figure 1), the tran-
sitions and places along this circuit should be removed since they will never be
activated.

25

(a) (b) (c)
not allowed not allowed input controlled by output

Figure 3: About event graphs

We are interested in timed event graphs. Without loss of generality, we may
consider that transitions are immediate and that holding times (represented by
bars in time units) apply only to places. As a matter of fact, if a transition has
some duration, we may split it into two distinct transitions, the beginning and
the end, separated by a place bearing the corresponding time (see Figure 3-(c)).
Moreover, if it is meant that a new activation of the transition cannot occur
before the end of the previous activation, it suffices to put a feedback arc with
a place marked with one token. Moreover, this place can incorporate a holding
time equal to some “reset time” if necessary.

The holding time at a place means that tokens must stay at least that time
in the place before being available for downstream transition firing. This poses a
problem concerning tokens of the initial marking: are they immediately available
at the beginning of the game, or after which time will they be available9? For the
time being we assume the following canonical initial informations10: tokens of
the initial marking are available immediately. More general initial informations
will be discussed later on. We assume that transitions are fired immediately
when they can be fired (otherwise, the behaviour would not be deterministic).

Events of interest in a timed event graph are the transitions firings and the
arrivals and departures of tokens at and from places. Events of a given type
(firing of transition x, arrival at place y|x, etc . . .) are numbered sequentially
as they occur. To completely describe the behaviour of a timed event graph
along time, it suffices to record the sequences of dates for all events of all types.

9In this latter case, the time after which they are available should be less than or equal to the
holding time of the place.

10We say “initial informations” rather than “initial conditions” for reasons that will be more
apparent later on.

26

Departure times of tokens from places are the same as firing times of downsteam
transitions. Also, arrival times of tokens at places are the same as firing times of
upstream transitions (except for tokens in the initial marking for which initial
informations should be given as already discussed). Hence, it suffices to record
the sequences of transition firing dates only (and of initial informations if they
are not canonical).

7.2 Daters in event-domain

From the above discussion, it is natural to introduce the following variables
called “daters”. For a transition labelled x, we define xn as the date at which
transition x has been fired for the nth time (indeed, n, as well as xn, may be
negative — see Remark 6 hereafter). We now show that these daters are related
by linear equations in some dioid. Consider the example of Figure 1. We claim
that

(x1)n = max[(x2)n−1, (u1)n + 3]

As a matter of fact, for x1 to be fired n times it is necessary that u1 be also
fired n times, but x2 needs only be fired n − 1 times since there is one token
already available in place x1|x2 at the beginning of the game. Moreover, if u1
produces a token at some time t, this token will not be available before t+ 3 for
use by x1, whereas there is no such delay between x2 and x1. The “max” reflects
the behaviour of joins in Petri nets (synchronization). Finally, equality arises
from the assumption that there is no extra delay for firing transitions whenever
tokens are all available.

Applying the same simple rules (namely, one token in the initial marking
induces a unit delay in index n, holding times are added to upstream daters,
max is taken over all upstream transitions), we get, e.g. for x3

(x3)n = max[(x1)n, (x2)n + 1, (x3)n−1 + 2] (53)

We let the reader write down the equations for all other transitions of Figure 1.
Let us now consider that all variables (ui)n, (xi)n, yn . . . lie in the complete

dioid (Z∪{−∞}∪{+∞},max,+), called Zmax, for short, in which ⊕ = max,⊗ =
+, ε = −∞, e = 0 and +∞ is for completeness — observe that ε ⊗ (+∞) =
(−∞) ⊗ (+∞) = ε = −∞. Then, (53) can be written as the following linear
equation

(x3)n = (x1)n ⊕ 1(x2)n ⊕ 2(x3)n−1 (54)

which means that we have obtained a way of describing timed event graphs as
linear time-invariant dynamic sytems in discrete “time”. In fact, this is a state
space representions in the event domain, rather than in the usual time domain,
since the index n counts events instead of being the clock pulse.

27

7.3 Counters in time-domain

Actually all trajectories produced by such systems are monotone (nondecreas-
ing) functions of n since we decided to number events in the order as they occur.
Monotone functions are “essentially” invertible (there is a problem with hori-
zontal pieces of the graph which requires some care) and we may consider the
inverse functions. These are functions of time, denoted by t (hence the time
domain), and values are interpreted as numbers of events (hence the name of
“counters” for the corresponding variables).

Remark 6 Actually, counters may be initialized at null or even negative values,
and they are incremented by one at each occurrence. Therefore, when we speak
of a “number n” of events, we do not mean that n events occurred, but rather
that the value of the corresponding counter is n. To avoid this confusion, we
prefer to speak of an ”event of number n” and n may be negative. In the same
way, the origin of time, and hence t, may be negative. ¤
We refer the interested reader to Caspi and Halbwachs [1] who introduced this
duality of points of view between time and event domains very formally, and to
whom we borrowed the terminology of daters and counters. Here we provide
a direct introduction to counters and to the corresponding equations without
reference to the previous section. A careful connection between counter and
dater equations should be established, but it will not be discussed here since
we are going to abandon both points of view and to introduce a new two-
dimensional domain later on.

For a transition x, let xt denotes the value of the counter at time t. Notice
that, for convenience, we keep on calling the variable after the name of the
transition although its physical meaning has changed (its is no longer a dater),
but the new context is recalled by the index which is t now, instead of n. We
claim that

(x1)t = min[(x2)t + 1, (u1)t−3]

As a matter of fact, as already discussed, an event of some number at transition
x1 has to be related to an event of the same number at u1, but to an event of
that number minus one at x2 (due to the presence of one token in the initial
marking of place x1|x2). Also, a token consumed at t by x1 has to have been
produced at least at time t− 3 by u1, since it is held at least three time unit at
place x1|u1. Finally, the “min” reflects the fact that one firing of x1 consumes
one token from x1|u1 and from x1|x2 and that no more firing occurs as long as
one of these upstream places remains empty.

The rules to get these counter equations directly from the graph or to derive
them from the dater equations are apparent. Because max must be changed into
min, the proper dioid to consider now is (Z∪{+∞}∪{−∞},min,+) called Zmin
(notice that now ε ⊗ (−∞) = (+∞) ⊗ (−∞) = ε = +∞). Counter equations
are linear for this dioid algebra: for example, the counterpart of (54) is

(x3)t = (x1)t ⊕ (x2)t−1 ⊕ 1(x3)t−2 (55)

28

but it should be kept in mind that the meaning of variables and of the sign ⊕
has changed.

Remark 7 The passage from max to min is a nonlinear transformation as
shown by the formula min(x, y) = −max(−x,−y) which can be translated with
Zmax notations into min(x, y) = (x−1 ⊕ y−1)−1. The passage from daters to
counters (inverse functions) is also a nonlinear transformation. But, there is an
algebra suited to each domain so that equations remain linear. ¤

8 A 2-D domain and the MinMax¿γ, δÀ algebra

8.1 Informations about events

We have seen that the type of events one need to consider in a timed event
graph may be reduced to transition firings. We thus label a type of event by the
name of the corresponding transition. For a transition x, we consider “pieces
of informations” about events as pairs of integers (n, t)x. What should be the
interpretation of such a piece of information? As we have already seen, the
graph carries pieces of information from upstream to downstream transitions.
At a given transition, we “add” informations in the sense of simply taking the
union of informations available a priori or coming from upstream.

But then we face the following problem. It may happen that, at a join, the
information coming from left is, say, b = (3, 3) whereas that coming from right
is c = (4, 2) (see Figure 4). If we interpret the pair (n, t) as “event of number n
occurred exactly at time t”, there will be a contradiction since b and c are not
on the graph of a nondecreasing function. But the contradiction is resolved if we
rather interpret (n, t) as “at time t, the number of the last event that occurred
is at most n”, or equivalently “the event of number n occurred at the earliest
at time t”. If we do so, then the piece of information b strictly dominates c in
the sense that b ⇒ c (think about it!), that is b ∪ c = b. In fact b dominates
all informations represented by points in the south-east cone of which b is the
vertex in the 2-D domain of Figure 4. However, in the same figure, a and b does
not dominate each other and a ∪ b (represented by the shaded area) is strictly
stronger than b or a alone.

Clearly, we are introducing an idempotent addition (the union) over pieces
of information, to which a partial order can be associated as in Theorem 1. For
this addition to be an inner operation, we have to define the set of informations
as the set of finite union of pieces of informations (union of cones), and for this
semilattice to be complete, we have to extend the definition to infinite unions.
The order is simply inclusion. There is a null element which is the information
dominated by any other one, namely ε = (+∞,−∞), which may be phrased
“the event of number ∞ occurred at the earliest at the beginning of times”,
which indeed says nothing about the behaviour of the sytem.

29

a

b

c

time

events

d

Figure 4: Cones of informations

Since we have a complete sup semilattice with a bottom element ε, we can get
a lattice by the construction recalled in Section 2.2. Applying this construction,
it is realized that the operation ∧ graphically amounts to the intersection of
corresponding areas. For example, a∩ b = d in Figure 4. It is then obvious that
this lattice is distributive.

Remark 8 By considering that a piece of information is equivalent to the col-
lection of informations lying in the south-east cone of which that piece is the
vertex, we have been able to resolve potential contradictions that would oth-
erwise have arisen when having to consider b ∪ c for example. But one may
argue that this is not the only may to avoid these contradictions and that set-
ting b ∪ c = c rather than b would have done the same job. This corresponds
to saying that a piece of information dominates all informations in the north-
west, rather than south-east cone. Otherwise stated, this amounts to turning
expressions as at most (resp. at the earliest) into at least (resp. at the latest)
in sentences above. Indeed, this other way of performing “addition” of infor-
mations will prove to be useful in another context later on. The sum we have
chosen is in fact compatible with the way join transitions gather informations
coming from upstream in Petri nets (it is worth taking a while thinking of that).
¤

8.2 Shift operators

As it was apparent from earlier sections, the graph carries informations from
upstream to downstream transitions. More precisely, in Figure 1, informations
(n, t)x1 can be related to informations (n′, t′)u1 if the latter are shifted back-
wards by three units in time, and to informations (n′′, t′′)x2 if these are shifted
backwards by one unit in the number of events.

30

Therefore, we associate a backward (elementary) operator (m, d)y|x to every
arc or place y|x, where m takes the value of the number of tokens in the initial
marking and d takes the value of the holding time. Then a piece of information
(n, t)x yields a piece of information (n′, t′)y = (m, d)y|x.(n, t)x := (n+m, t+ d).
The definition is extended in a straightforward manner to “sums” of pieces of
informations by distributivity. It is also immediate to define the “sum” of two
shift operators fy|x and gy|x in a usual way by summing up the informations
produced by the two operators from the same information ix. This corresponds
to two parallel arcs between x and y in the graph. General (nonelementary) shift
operators are defined as (finite or infinite) sums of elementary operators. Two
arcs in series y|x and z|y provide a way of defining the “product” of operators
as the usual composition of applications. Obviously, (m′, d′)z|y◦(m, d)y|x = (m+
m′, d+ d′). There is an identity operator represented by (0,0). The product of
operators distributes over sum.

It is not hard to realize that we are just about constructing a dioid structure
for shift operators. But it is possible to extend this structure to informations
(observe that we already defined the sum of informations which behaves arith-
metically as the sum of operators). In fact informations and operators need
not be distinguished. As a matter of fact, we may conceptually consider that
every information, say (n, t)x, is produced from a canonical information (0, 0)
attached to a “source” transition s from which we draw an arc x|s with weight
(n, t) (if n and t are counted from negative origins, these origins are put at the
source instead of (0, 0)). However this discussion is better pursued with more
convenient algebraic notations and in a more abstract setting.

8.3 Coding informations and shift operators

A collection of informations {(ni, ti) | i ∈ I ⊂ N} about a type of event is
a collection of points in the plane depicted on Figure 4. It may be seen as
a pointwise measure in the plane (a measure in Z2). We may represent this
“discrete event measure” by its characteristic function

∑
i∈I γ

niδti where the
sum is a formal sum and γ and δ are formal variables. In fact, γ may be
interpreted as the backward shift operator on counting and δ as the backward
shift operator on dating. For example, by considering arcs such as x1|x2 (resp.
x2|x1) in Figure 1, it can be shown that downstream discrete event measures can
be derived from upstream ones by formal multiplication of the corresponding
formal power series by γ (resp. δ).

Formal addition of power series corresponds to our previous sum or union
of informations about a type of event. But we must reflect the fact that a ∪ d
(resp. b∪ d) in Figure 4 is equal to a (resp. b). This imposes, in addition to the
usual rules of formal sum and product of power series, the unusual additional
rules

γnδt ⊕ γn′δt = γmin(n,n′)δt (56)

31

γnδt ⊕ γnδt′ = γnδmax(t,t′) (57)

Notice that this is enough to get that b ∪ c = b in Figure 4 since b ∪ c =
(b ∪ d) ∪ (d ∪ c) = b ∪ d = b.

We are now ready to introduce a new dioid more formally in order to provide
a theoretical basis to all these calculations.

8.4 The dioid MinMax¿γ, δÀ
We first introduce the set of formal power series B¿γ, δÀ in two variables (γ, δ)
with boolean coefficients and exponents in Z. This set will be designated by L
in the sequel. Observe that this is a dioid. In particular the sum is idempotent
since coefficients are boolean, ε corresponds to the series with coefficients all
equal to zero and e = γ0δ0. Graphically, an element of L is represented by a
collection of points in Z2: a monomial γnδt with boolean coeffficient 1 yields
a point with coordinates (n, t); null boolean coefficients yield no point (hence
ε corresponds to the empty set and e to the origin of the plane). Addition
corresponds to union and multiplication of two elements to the vector sum of
the associated collections of points. Order is inclusion. ∧ is intersection.

As previously observed, this dioid is not adequate for our purpose since (56)–
(57) are not part of the usual calculation rules with formal power series. In fact,
we wish that a point a = (n, t) in the 2-D domain, coded by the monomial
γnδt, be “equal” to the whole south-east cone of vertex a. But this cone is
coded by γnδtγ∗(δ−1)∗ (recall the definition (32) of the star). Observe that
γ∗(δ−1)∗ = (γ⊕δ−1)∗ from (49). We are thus led to consider the dioid L modulo
γ ⊕ δ−1 based on Definition 9 and Theorem 20.

Definition 10 The dioid MinMax¿γ, δÀ, designated hereafter by M for
short, is the dioid L/(γ ⊕ δ−1).

Comments

(i) This dioid is commutative, complete and distributive. All these properties
can be checked easily. The graphical interpretations of ⊕, ∧ and ⊗ as ∪,
∩ and vector sum respectively are still valid, but they now apply to unions
of south-east cones.

(ii) Starting from the formal definition of M, it is easy to check that all cal-
culations can be performed practically using the usual the rules of formal
power series and the additional rules (56)–(57). It should be kept in mind
that an element of M is an equivalence class. Therefore it has several
formal representations. For example, e = γ∗(δ−1)∗ = γ∗ = (δ−1)∗ =
γ∗ ⊕ (δ−1)∗ = γ0 = δ0 = γ0δ0 in M but not in L! Indeed, in each equiva-
lence class, there is a minimal and a maximal representatives, “minimal”
and “maximal” referring to the order in L. The minimal representative
is obtained by coding only the extremal north-west points of the shaded

32

area in Figure 4. The maximal one is obtained by coding all the points
in the shaded area. This maximal representative is obtained algebraically
by multiplication of any representative by γ∗(δ−1)∗ (see last statement of
Theorem 20).

(iii) Let us consider how to calculate a ∧ b in M. First of all, since the dioid
is distributive, it suffices to know how to calculate that expression when
a and b are monomials. Then it can be checked that

γnδt ∧ γn′δt′ = γmax(n,n′)δmin(t,t′) (58)

which should be compared with (56)–(57). Notice that ⊗ does not dis-
tribute over ∧ in general, although this is true for multiplication by mono-
mials.

(iv) In a general complete dioid, let us introduce the following notation (com-
pare with (32))

a∧ := e ∧ a ∧ a2 ∧ . . . (59)

Then, coming back to M, consider the following table

γ+∞ ∼ γ∧

γ−∞ ∼ (γ−1)∗

δ+∞ ∼ δ∗

δ−∞ ∼ (δ−1)∧

γ+∞δ−∞ ∼ ε

γ−∞δ+∞ ∼ ∞

It is not difficult to realize that elements in the left-hand side formally
behave as their corresponding elements in the right-hand side, the latter
being well-defined in M. Therefore, we may take the right-hand expres-
sions as definitions for the left-hand notations. The only additional rules
to keep in mind are the following

γ−∞γ+∞ = γ+∞ (60)
δ−∞δ+∞ = δ−∞ (61)

These rules can easily be proved from the definitions.

(v) M is not Archimedian. A counterexample is the following

γnδ−∞ ⊗∞ = γ−∞δ−∞ 6=∞

which contradicts Theorem 2. ¤

33

9 Input-output representation in the 2-D do-
main

9.1 System equations and transfer matrices

Consider an event graph as in Figure 1. To each transition, we associate an
element of M which codes the whole set of informations available about the
(generally infinite) sequence of events related to this transition. This element
will be called after the name of the transition (e.g. x1) but it should be kept
in mind that it is different from a dater or a counter, and that it is a power
series in two variables with positive (and possibly negative) exponents (indeed
an equivalence class). If necessary, to recall this, we may sometimes say x1(γ, δ)
instead of x1.

From all that have been said until now, it should be clear that the following
equations can be obtained for the case of Figure 1 x1

x2
x3

 =

 ε γ ε
δ ε ε
e δ γδ2

 x1
x2
x3

⊕
 δ3 ε

ε γδ
ε ε

(u1
u2

)

y =
(
ε γ δ3

) x1
x2
x3




(62)

In general, for any event graph, we get the following equations

x = Ax⊕Bu y = Cx (63)

where x, y (resp. A,B,C) are column vectors (resp. matrices) of appropriate
dimensions with entries in M.

The former equation is an implicit equation of the form (31). We know that
it has no unique solution in general. However, we are interested in the smallest
solution since this corresponds to the earliest possible dates for events (recall
that we assumed that transitions are fired as soon as they can). Using Theorem
9-(i), we conclude that x = A∗Bu and

y = CA∗Bu (64)

This completely specifies the input-output behaviour of the system: for given
informations about the input transitions (they must be activated from outside),
informations about the earliest possible outputs are calculated. The matrix
H := CA∗B is called the “transfer matrix” of the system. Its expression has
been given in (1) for the case of Figure 1.

In general, Hij corresponds to the “trajectory” of yi for all inputs uk = ε
except for uj = e. In conventional system theory, it is called the “impulse

34

(a) (b) (c)

canonical
initial

informations

non canonical
initial

informations

controlling
initial
tokens

y

u u

y y

u

v

w

response” from j to i. Here, an input ε = γ+∞δ−∞ can be interpreted as an
infinity of tokens available in an imaginary place upstream the corresponding
input transition since the beginning of times. This is the least constraining
input one can imagine. On the other hand, an input e = γ∗ may be called an
impulse at time 0. Before time 0, the input transition is frozen, and then an
infinity of tokens are made available. Notice that tokens (or transition firings)
are numbered from 0, not from 1, since e = γ0δ0 ⊕ γ1δ0 ⊕ · · ·

9.2 About initial informations

In Section 7.1, we raised the problem of tokens of the initial marking on which
we defined canonical informations as “these tokens are immediately available”.
Notice that this corresponds to the “best” initial “conditions” in that they give
the earliest possible outputs (that is the smallest ones in theM order). Consider
the very simple graph of Figure 5-(a): the transfer function is y = γ2δ2u. For
an impulse input u = e (an infinity of tokens available at the input transition
at time 0), the output is γ2δ2⊕γ3δ2⊕· · · which means that “the third and next
tokens are out at time 2” (recall that the third token is labelled 2, the first being
labelled 0). Nothing is said about the first two tokens, those which belong to the
initial marking. More exactly, at the earliest, we may suppose that these two
tokens were out since −∞. Indeed, there is no explanation why these two tokens
did not leave the place at any time before 0. Therefore, our theory appears to
be coherent. But suppose that one wants to mean that one of the tokens of the

Figure 5: Canonical and non canonical initial informations

initial marking (the lower in Figure 5-(b)) is available only at time 0, whereas
the other one (the upper) is available only at time 1 (that is, it spent only one

35

time unit in the place at the beginning of the game). This may be represented
as shown in (b). To come back to canonical initial informations, we can draw
the expanded graph of Figure 5-(c) where it is necessary to add the grey input
transitions v and w. Without these controls, the two tokens would again be able
to leave the sytem at any time before 0 (the transfer function would again be
γ2δ2). Now it is y = w⊕γδ(v⊕γδu). To release the tokens only at time 0, we set
v = w = e and we get y = e⊕ γδ ⊕ γ2δ2u. The input-output relationship is the
same as in the previous case but we have the additional informations that the
first token leaves at time 0 and the second at time 1 (this is more informations
than previously and indeed this new y is larger than the previous one in the
M order). We invite the reader to consider the same kind of non canonical
initial informations but for tokens in a loop. Notice that we permanently used
the expression “initial informations” rather than “initial conditions” because
variables are attached to transitions whereas these informations are attached to
tokens of the initial marking.

9.3 Circulation of tokens

Consider e.g. the event graph of Figure 1. Suppose that we bring only one token
at the input transition u1 at time 0. The corresponding inputs are u1 = e⊕γδ+∞

and u2 = δ+∞ and the output calculated with (1) is y = δ8 ⊕ γδ+∞, indicating
that a single token has been released at time 8. Then the system is stabilized,
but with a new marking: since all transitions, but u2, have been activated once,
all places have the same marking as initially except for x2|u2 where the token
has disappeared. If we calculate the new transfer matrix for this new “initial
marking”, we find that H1 is unchanged, but that H2 is divided by γ with
respect to the previous one appearing in (1). The explanation is that changing
the origins of daters and of counters has no effect on the transfer matrix provided
that the same change be applied to all input and output transitions. This is
what occurred in our example for the pair (u1, y) since both have been fired
once. But the rule is not fulfilled for (u2, y), hence the change in H2.

Consider again the experiment of bringing one token at u1 at time 0 from
the initial situation of Figure 1. At time 2, the token is still in place x1|u1
since it must stay 3 time units there, and no other transition has been fired so
far. From what has been said above, it can be predicted that if we write down
the equations for this new situation, considering canonical initial informations
(which anyway do not affect the transfer matrix), we shall find the same H2, but
a H1 which is multiplied by γ. Let us consider this new transfer matrix, say H̄,
as the reference for what follows. Just after time 3, transition x1 will have been
fired, taking off one token from places x1|u1 and x1|x2 and adding one token
in places x3|x1 and x2|x1. This new transition firing which has affected only
an inner transition should not modify H̄. This can be checked by the reader.
Of course, this will not be the case if transitions are fired by adding tokens
in upstream places directly from outside, that is without passing through input

36

transitions. This may cause a dramatic change of the transfer matrix, especially
if it affects the number of tokens in each circuit which is invariant for any event
graph.

The fact that regular firings of inner transitions which move tokens around
do not affect the transfer matrix is reminiscent of the well-known fact of con-
ventional system theory that a linear change of basis in the state space does not
modify the input-output relationship. Although we have not considered transfer
matrices (in a single variable) corresponding to either dater or counter “state
space” equations yet (this will come later on), we invite the reader to check
whether those transfer matrices are not affected by inner circulations of tokens,
and possibly to find out the corresponding state space basis change. It turns
out that the answer is yes only with the counter approach. Notice that tokens
of the initial marking cause delays in dater equations whereas they appear as
coefficients in counter equations. Coming back to our 2-D domain, we let the
reader check that, if transition xi is regularly fired once, the new matrices, say
Ā, B̄, C̄, obtained by writing down equations after this firing are related to the
previous A,B,C by the relations

Ā = M−1AM B̄ = M−1B C̄ = CM

where M is a diagonal matrix with Mjj = e for j 6= i and Mii = γ. As a matter
of fact, firing xi produces one token more (multiplication by γ) — resp. one
token less (multiplication by γ−1) — in all downstream — resp. upstream —
transitions (indicated by the nonnull entries of column A.i — resp. of row Ai.).
The new matrices contain no entries with negative exponents iff the transition
firing is regular.

10 Output targets and the adjoint system

10.1 The problem of output targets as a residuation
problem in M

Instead of specifying input informations and calculating the earliest (smallest)
resulting output, we may rather impose output targets and search for the latest
(greatest) input that meets these specifications. More precisely, for a specified
target z (a column vector the dimensionality of which is the number of output
transitions, say p), we pose the following problem

Find the greatest v such that CA∗Bv ≤ z (65)

where v has the dimensionality of the number of input transitions. This is
reminiscent of Definition 7 of residuation and one has that v = (CA∗B)\z.

There is however a point which deserves some attention. An elementary
target specified by a pair (n, t) should be interpreted as “the event of number n

37

a

b

time

events

allowed outputs

cones of targets

must occur at the latest at time t” or “the number of the last event occurred
up to time t must be at least n”. A little thinking should make clear that
(n, t) dominates (is stronger than) all other targets (n′, t′) such that n′ ≤ n and
t′ ≥ t, that is targets in the north-west cone of (n, t). Considering several (or an
infinity) of such elementary targets to be met all together amounts to “adding”,
in the sense of taking the union of, the corresponding north-west cones. These
unions of cones are elements of a dual dioid called N = MaxMin ¿γ, δÀ:=
L/(γ−1 ⊕ δ). The practical rules for calculating in N (apart from the usual
rules of power series) are obtained by inverting “max” and “min” in (56)–(57).
However, z appearing in (65) must have entries that belong to M and not to
the dual dioid N .

Figure 6: Cones of targets

In fact, a union of target cones (for example those of vertices a and b of Figure
6) defines an area of Z2 into which allowed output “trajectories” (represented
by elements belonging toM) must not penetrate. That is to say, we must code
the shaded south-east area of Figure 6 to get the entries of z ∈ Mp, and then
we must require that an admissible trajectory be not greater than z (the border
is allowed). The practical rule is the following: given en elementary target (n, t)
for output transition j, we set zj = γ−∞δt⊕γnδ+∞ ∈M as the jth coordinate of
the right-hand side z of of (65), and given a collection of targets {(ni, ti) | i ∈ Ij},
we set

zj =
∧
i∈Ij

(γ−∞δti ⊕ γniδ+∞) (66)

Recall that residuation distributes over ∧ (see (22)).

38

10.2 Solving the target problem with the adjoint system

Notice that since the rules for “adding” a collection of elementary targets
{(ni, ti) | i ∈ Ij} (represented by an element of N) are dual of those for adding
a collection of pieces of informations, it would suffice to code this collection of
targets as

ηj =
⊕
i∈Ij

γ−niδ−ti (67)

to come back into M. The minus signs in the exponents have the desired
effect of inverting “max” and “min” in calculations and this correspondence is
obviously an isomorphism between dioids N and M. Then the question arises
of the relationship of z given by (66) with η given by (67) which are two different
ways of coding targets in M.

Lemma 5 Let ϕ := γ−∞δ0 ⊕ γ0δ+∞ ∈ M. Then the p-dimensional column
vector with entries zj given by (66) is related to the row vector with entries ηj
given by (67) by zj = η̃j = ηj\ϕ.

The proof is straightforward using formula (21) and the fact that residuation
by monomials (say γ−nδ−t) amounts to multiplication by the inverse γnδt. This
is an example where residuation is easy to perform.

As a consequence of this lemma and the discussion around formula (29) in
Section 3.3, the solution v of problem (65) can be obtained as follows (we use
“tilde” on vectors with an obvious meaning — recall that column vectors yield
row vectors by this transformation and conversely)

v = (CA∗B)\z = (CA∗B)\η̃ = µ̃ (68)

with
µ = ηCA∗B =⇒ µ = ξB ξ = ξA⊕ ηC (69)

which is the adjoint system of (64)–(63).

Remark 9 Notice that, in (69), the implicit system in the right-hand side must
be solved for the smallest solution if we want to replace =⇒ by ⇐⇒. This is
coherent with the fact that “smallest” in the coding (67) of targets is equivalent
to “greatest” (latest) in the coding (66), that is after the transformation “tilde”.
¤

10.3 Direct derivation of the adjoint system

Let us show how we could have obtained the solution of problem (65) through
formulas (68)–(69) by reasoning directly on the graph as we did to obtain equa-
tions for the direct system. Consider the example of Figure 1 and the output
transition y for which a collection of targets {(ni, ti) | i ∈ Iy} are given. It is
clear that these targets can be transferred back to the upstream transitions x3

39

and x2 by subtracting 3 units from ti, respectively 1 unit from ni. That is arcs
with weights (shift operators) (m, d) operate back with (−m,−d). Notice that
joins in the direct graph are forks in the reverse graph. In the same way, forks
become joins as for example at transition x2. Targets carried back from the
downstream transitions y, x3, x1 must be “added” using rules which are com-
pletely dual of those for adding informations as already discussed. Finally, we
see that we must operate with a dual algebra and with shift operators which
have negative signs. Instead of that, we may decide that we are going to change
the signs of all equations so that we come back to the previous algebra, shift op-
erators get back their positive signs, but a collection of targets is now recorded
as {(−ni,−ti)}. This corresponds exactly to the coding (67) and to equations
(69), where the original algebraM and the original operators A,B,C (not their
“opposite”) are used, but where vectors are row vectors operating on the left
of operators (because we must anyway scan the graph from output to input
transitions).

11 Rationality, realizability and periodicity

11.1 A fundamental theorem

A timed event graph as that of Figure 1 can be represented as a finite-
dimensional linear invariant system (63) which in turn can be represented by a
transfer matrix (64).

Remark 10 If there are direct arcs from input transitions to output transitions,
we get an output equation of the form y = Cx ⊕ Du and a transfer matrix
CA∗B ⊕ D. However, by redefining the “state” vector as x̄ = (xT , uT)T , it
is possible to come back to the form C̄Ā∗B̄ but at the price of increasing the
“state” dimensionality. This has no importance in what follows since we are not
going to deal with the problem of “minimal” realizations. ¤

Observe that for a realistic (“causal”) event graph, entries of A,B,C are poly-
nomials ofM involving only nonnegative exponents. These polynomials belong
to the “dioid closure” of the “generating subset” E = {ε, e, γ, δ}. This motivates
the following definition of rationality.

Definition 11 (Rationality) A matrix or a vector with entries in M is said
rational iff its entries lie in the subdioid E∗ ⊂ M (rational closure of E :=
{ε, e, γ, δ} — see Definition 8).

Definition 12 (Realizability) A p × m-dimensional matrix H in M is said
realizable iff it can be written

H = C(γA1 ⊕ δA2)∗B (70)

40

where C and B are matrices of respective dimensions p× n and n×m, n being
an arbitrary but finite integer, A1, A2 are n× n, and the entries of all matrices
lie in {ε, e}.

Definition 13 (Periodicity) An element h ofM is said periodic iff there exist
nonegative and finite integers ν, τ, r, s (r and s not both null) such that h can
be written as

h = Pν−1,τ−1 ⊕ [γνδτ ⊗Qr−1,s−1 ⊗ (γrδs)∗] (71)

where Qr−1,s−1 stands for a polynomial in (γ, δ) with nonnegative exponents of
degrees not greater than (r − 1, s − 1), and Pν−1,τ−1 has a similar meaning. A
matrix H is periodic iff all its entries are periodic.

The intuitive meaning of formula (71) considered as an impulse response is the
following. There is a transient behaviour represented by P , followed by a peri-
odic behaviour in which a pattern represented by Q is indefinitely reproduced
around an asymptotic slope s/r. This ratio represents the asymptotic output
rate of the response: in the average, r tokens get out each s time units.

If s = 0, the impulse response is polynomial since (γp)∗ = e : this is the
behaviour of a purely “moving average” system (no circuit in the graph). Notice
that, here, thinking of a “polynomial impulse response” as a “finite impulse
response”, as it is familiar in conventional system theory, may be misleading:
for an “impulse” at the input, that is an infinity of tokens brought at time 0,
there is a transient (some tokens get out as indicated by the polynomial), and
then an infinity of tokens get out all together.

If r = 0, since (δs)∗ = δ+∞, the response is “frozen” after a possible transient
during which some tokens get out (this may rather be the kind of behaviour one
would like to call a “finite response”). This happens when there is a circuit
without token which is blocking the output transition.

Theorem 21 For H ∈Mp×m, the following three statements are equivalent

(i) H is realizable

(ii) H is rational

(iii) H is periodic

Proof The implication (i) ⇒ (ii) is straightforward. The converse (ii) ⇒ (i)
follows, at least for the single-input single-output (SISO) case, from Theorem
14 with B = C = {ε, e}. It remains to split up matrix Ax which appears in
the (B, C)-representation (45) into γA1 ⊕ δA2 which offers no difficulty. For the
multiple-input multiple-output (MIMO) case , it suffices to realize the SISO
transfer for each input-output pair individually, and then to concatenate these
realizations, since we do not worry about minimality.

It remains to prove the equivalence (ii) ⇔ (iii). Since the definitions of
periodicity and rationality refer to the entries of H individually, it suffices to

41

deal with the SISO case. The implication (iii) ⇒ (ii) is obvious: if h can be
written as (71), then clearly h ∈ E∗. Conversely, if h is rational, since M is a
commutative dioid, we can use Theorem 19 (applied to the dioid closure of E)
to see that h can be written as

h =
⊕
i∈I

γαiδβi(
⊕
j∈Ji

γrj δsj)∗

=
⊕
i∈I

γαiδβi
⊗
j∈Ji

(γrj δsj)∗ (72)

where I and the Ji’s are finite sets, αi, βi, rj, sj are nonnegative integers and
(72) follows from (49). The proof will be complete if we show that (72) can be
reduced to (71): roughly speaking, this amounts to saying that some (γrj δsj)∗,
essentially the one for which the “slope” sj/rj is the greatest, asymptotically
“absorbs” all other terms of the same type to which it is added or which it
multiplies. This is what is explained in the next technical lemma. ¤

Lemma 6 InM, expressions of the form (72) can always be reduced to expres-
sions of the form (71).

Outline of proof This lemma can be proved in three steps. First, for given
positive integers r, r′, s, s′

[s/r > s′/r′] =⇒ [∀α, α′, β, β′,∃N : ∀n′ ≥ N, ∃n : γαδβ(γrδs)n ≥ γα′δβ′(γr′δs′)n′ in M]

From this result,
it is then proved that expressions of the form γαδβ(γrδs)∗ ⊕ γα

′
δβ
′
(γr

′
δs
′
)∗ or

(γrδs)∗(γr
′
δs
′
)∗ can be reduced to expressions of the form P (γ, δ)⊕Q(γ, δ)(γrδs)∗,

where P (γ, δ) and Q(γ, δ) are polynomials in (γ, δ). Essentially the same thing
can be proved when s/r = s′/r′ except that now the reduced expression is
P ⊕ Q(γr

′′
δs
′′
)∗ where r′′ (resp. s′′) is the least common multiple of r and r′

(resp. s and s′). Finally, it remains to check that those expressions can be
reduced to expressions like (71) for which additional conditions on the degrees
of P and Q and on the valuation of Q must be met. ¤

Comments

(i) In the proof of Theorem 21, instead of proving the implication (ii) ⇒
(iii), we might have proved the implication (i) ⇒ (iii) using Theorem 18
and formula (51). This gives additional insight into how the unique term
(γrij δsij)∗ appearing in the representation (71) of each Hij is related to the
weights of circuits of matrix A = γA1 ⊕ δA2 appearing in (70). For an
input-output pair (uj, yi), we consider all (oriented) paths connecting these
transitions and all circuits which have at least one node (i.e. transition) in
common with those paths. These are the circuits of interest to determine
the maximal ratio sij/rij . If there is no such circuit, this means that the

42

polynomial Q of (71) is null and (γrij δsij)∗ is irrelevant. As a consequence,
if matrix A is strongly connected (which in particular precludes any direct
path from the input to the output, given that we have not included a term
Du — see Remark 10), then there is a unique (γrδs)∗ for the whole transfer
matrix H.

(ii) In the definition of realizability, we might have required the weaker condi-
tion that H = CA∗B with entries of A,B,C be simply polynomials with
nonnegative exponents (this would be called a polynomial representation).
The “inner” dimension would then be smaller than above in general for a
given H. This corresponds to choosing E as the dioid closure of {ε, e, γ, δ}
and to taking B and C identical to E . In fact, there is a lot of other
intermediate possibilities (see the comments at the end of Section 4.2).¤

11.2 The eigenvalue problem in the 2-D domain

We have seen that the impulse response of a finite-dimensional linear invariant
system typically consists of a transient followed by a periodic behaviour which
is characteristic of the system. Usually, for an autonomous linear system, char-
acteristic behaviours are associated with eigenvalues, and transients are avoided
by starting with initial conditions corresponding to eigenvectors.

Consider the autonomous system xn+1 = Axn in the event domain (recall
that the algebra is Zmax). The eigenvalue problem Ax = λx has been extensively
studied in [2, 3]. Essentially, for a matrix A representing a strongly connected
graph, there exists a unique eigenvalue λ which is equal to the maximal ratio
s/r over all circuits of the graph (s is again the number of time units and r is
the number of tokens of the initial marking along a circuit). For non strongly
connected graphs, say for a graph with two strongly connected components, it is
easy to figure out that there are two eigenvalues if the critical circuit belongs to
the upstream component (the two eigenvalues are those of the two components
considered separately) whereas there is only one eigenvalue (the largest one) if
the critical circuit is downstream. The structure of the “eigenspace” has also
been extensively studied.

An eigenvalue λ = s/r means that, in the average, each component of xn
(the dater) is incremented by s time units every time n (the counter) is increased
by r. In the 2-D domain, we have to say something similar. Recall that now
x represents the whole trajectory. If a trajectory extending from −∞ to +∞
can “slide” along itself by translations (r, s) or (−r,−s) without changing, it is
invariant when multiplied by any positive or negative power of the monomial
γrδs. An elegant way to say this is to appeal once again to the “calculus modulo”
introduced in Section 6. More precisely, we have to check that [x]γrδs⊕γ−rδ−s is
polynomial, each polynomial entry representing a pattern which is repeated
indefinitely. This justifies the following definition.

Definition 14 We say that a pair of positive integers (r, s) is an eigenvalue of

43

the square matrix A with rational — see Definition 11 — and polynomial entries
iff there exists a vector x with the same kind of entries, which is not identically
null and such that

x = Ax in M/(γrδs ⊕ γ−rδ−s) (73)

When calculating inM/(γrδs⊕ γ−rδ−s), in addition to the rules (56)–(57), one
is allowed to replace every positive or negative power of γrδs by e since they all
fall in the same equivalence class (thanks to (36)–(37)). Also, because of the
commutative diagram of Figure 2, all these simplification rules can be used in
any order.

Theorem 22 Let A be a square matrix with rational and polynomial entries
and assume that A is represented by a strongly connected graph. Then, there
exists an eigenvalue (r, s), and for this eigenvalue the ratio s/r is maximal over
all circuits of the graph (in this sense, the eigenvalue is unique).

Outline of proof This statement is a direct consequence of formula (40). This
formula gives the general form of an x verifying (39). To prove existence of
an eigenvector, we set yκ = 0 for all circuits except that or those achieving
the maximal ratio s/r for which we set, say, yκ = e. We then use Lemma 6
and we calculate modulo γrδs ⊕ γ−rδ−s if the critical circuit is unique and has
weight (r, s), or we appeal to the least common multiples of all critical pairs
(r, s) otherwise (see the explanations following Lemma 6). The resulting x is
polynomial and rational and it verifies (73).

Conversely, suppose that x verifies (73) for some pair (r, s). This means
that ~x := (γrδs)#x verifies (39) and thus, from Theorem 12, it can be identified
with an expression of the form (40). A contradiction arises when passing to
the equality of those two expressions of ~x modulo γrδs ⊕ γ−rδ−s if one assumes
that s/r is not the maximal ratio over all circuits. This contradiction is based
on the observation that (γr

′
δs
′
)∗ (mod γrδs ⊕ γ−rδ−s) cannot be polynomial if

s′/r′ > s/r. ¤

11.3 Transfer matrices associated to dater and counter
equations

The following notations refer to those introduced in Section 4.3. Let us keep
B = C = {ε, e} and let F = {ε, e, δ},G = {γ}. It is obvious that the dioid F∗
is isomorphic to the (complete) dioid (N ∪ {−∞} ∪ {+∞},max,+) denoted by
Nmax for short. Moreover, F∗⊗B and C⊗F∗ are identical to F∗ whereas F∗⊗G
reduces to the set of elements of the form aγ where a ∈ Nmax.

Remark 11 We might have started with G = {e, γ, γ2, . . .}, in which case F∗⊗
G would amount to the set of polynomials in γ with coefficients in Nmax. The rest
of the discussion could be carried on, with some adaptations, in this situation.
¤

44

An observer (resp. controller) representation (see Theorem 16) is of the form
C(γA)∗B where we may consider that the entries of A and B (resp. C) are in
Nmax, those of C (resp. B) are in {ε, e}. This can be viewed as the transfer
matrix corresponding to the following dater equations (the algebra is Nmax)

xn+1 = Axn ⊕Bun+1 yn = Cxn

and γ appears as the unit backward shift operator in the event domain.
Let Zmax¿γÀ be the set of formal power series in γ with coefficients in

Zmax. Consider the correspondence γnδt 7→ tγn which associates to a monomial
in (γ, δ) (with boolean coefficient 1) a monomial in Zmax¿γÀ. This is extended
in an obvious manner to formal power series. Recall the calculations rules (56)–
(57) inM and notice that calculating in Zmax¿γÀ amounts to taking the latter
into account but not the former. That is to say, we must introduce the following
additional rule in Zmax¿γÀ

aγn ⊕ aγn′ = aγmin(n,n′)

This of course can be done more formally by introducing an equivalence relation.
Coming back to state space equations, it is realized that an equation like xm =
axm−n ⊕ axm−n′ can be simplified into xm = axm−min(n,n′), which is easy to
understand directly.

All these considerations can dually be made with counter equations (time
domain) by inverting the role of γ and δ when defining F and G, by changing
Nmax into Nmin (with an obvious definition of the latter) and Zmax¿γÀ into
Zmin¿δÀ, by introducing dual calculations rules, etc. . . In our opinion, the
2-D domain offers a complete symmetry between counting and dating which is
somewhat lost when projecting in either one-dimensional domain.

12 Conclusion

In this paper, we have attempted to provide a unified introduction to unusual,
albeit not new, algebraic tools, and to show how they can be used in the con-
struction of a new “linear” system theory. This theory encompasses systems
that can otherwise be described as event graphs, a special class of Petri nets.
Essentially, in this class, logical “and” can be modelled easily, but not logical
“or”, unlike in Automata theory. However, time and events can be manipulated
simultaneously. Anyway, event graphs appear as the class of Petri nets that are
“linear” when using dioid algebras. We have shown several ways of modelling
them (in the event domain, in the time domain and in a 2-D domain) and a
different algebra has to be used in each approach, but all fall into the category
of dioids.

We have tried to give a sufficiently self-contained presentation, and some
algebraic results appear here for the first time. However, there was no attempt

45

to be exhaustive. On the algebraic side, we did not discuss such issues as “linear
dependence” in “vector spaces” on dioids (sets Dn with an internal addition ⊕
and an external multiplication ⊗ by scalars in D). This issue is basic for the
system-theoretic issue of “minimal realizations”, a question which is still open
(see however [14]). There are several possible definitions of linear dependence
[13] and one of them can be characterized by the condition of some “determi-
nant” being null [9]. We did not either discuss the Cayley-Hamilton theorem
(see [12, 16]): it holds true in dioids simply because of the proof of Straubing
[18] which is based only on combinatorial properties that are common to both
the conventional and the dioid algebras. However, the formulation of Cayley-
Hamilton theorem in dioids requires some care because of the lack of “minus
sign” in these algebras. This theorem should play an important role in realiza-
tion theory.

On the system-theoretic side, apart from the basic question of minimal re-
alization, we believe that control and optimization issues should be more de-
velopped for this theory to prove practically useful. In this paper, we did not
review such notions as “stability” and structural controllability and observabil-
ity previously introduced in the framework of dater equations, nor the associated
results concerning stabilizability by dynamic output feedback [4]. The practical
significance of these results in the framework of flexible manufacturing systems
was discussed in earlier papers [2, 3].

Anyway, considering the amount of efforts that has been devoted to the
development of conventional linear system theory during at least twenty years,
it must be considered that this new sytem theory is just in its infancy. However,
it is interesting to see how continuous systems and discrete event systems can
be essentially considered from the same points of view and concepts, provided
that the algebra be adapted. This requires a specific effort.

Acknowledgement Mr. Ramine Nikoukhah who recently joined our group
(on leave from MIT) helped us in clarifying some points such as the issue of
initial conditions. His contribution is gratefully acknowledged.

References

[1] P. Caspi and N. Halbwachs, “A functional model for describing and reason-
ing about time behaviour of computing systems ”, Acta Informatica, Vol.
22, pp. 595–627, 1986.

[2] G. Cohen, D. Dubois, J.P. Quadrat and M. Viot, “Analyse du comporte-
ment périodique des systèmes de production par la théorie des dioides”,
INRIA Report No. 191, Le Chesnay, France, 1983.

[3] G. Cohen, D. Dubois, J.P. Quadrat and M. Viot, “A linear system theoretic
view of discrete event processes and its use for performance evaluation in

46

manufacturing”, IEEE Trans. on Automatic Control, Vol. AC–30, pp. 210–
220, 1985.

[4] G. Cohen, P. Moller, J.P. Quadrat and M. Viot, “Linear system theory
for discrete-event systems”, 23rd IEEE Conf. on Decision and Control, Las
Vegas, Nevada, 1984.

[5] G. Cohen, P. Moller, J.P. Quadrat and M. Viot, “Une théorie linéaire
des systèmes à évènements discrets”, INRIA Report No. 362, Le Chesnay,
France, 1985.

[6] G. Cohen, P. Moller, J.P. Quadrat and M. Viot, “Dating and counting
events in discrete event systems”, 25th IEEE Conf. on Decision and Control,
Athens, Greece, 1986.

[7] R.A. Cuninghame-Green, “Minimax Algebra”, Springer-Verlag, Berlin,
1979.

[8] P. Dubreil and M.L. Dubreil-Jacotin, “Leçons d’Algèbre Moderne”, Dunod,
Paris, 2nd ed., 1964.

[9] M. Gondran and M. Minoux, “Linear algebra in dioids: a survey of recent
results”, Annals of Discrete Mathematics, Vol. 19, pp. 147–164, 1984.

[10] S. Helbig, “Optimization problems on extremal algebras: necessary and
sufficient conditions for optimal points”, In: B. Borowski and F. Deutsch,
Eds., “Parametric optimization and approximation”, Birkhäuser-Verlag,
Basel, Switzerland, pp. 166-184, 1985.

[11] F.P Kelly, “Reversibility and Stochastic Networks”, Wiley, New-York,
New-York, 1979.

[12] P. Moller, “Théorème de Cayley-Hamilton dans les dioides et application
à l’étude des systèmes à évènements discrets” , 7th INRIA International
Conference on Analysis and Optimization of Systems, Antibes, France,
(Proc. Springer-Verlag), 1986.

[13] P. Moller, “Notions de rang dans les
dioides vectoriels” , CNRS/CNET/INRIA Seminar “Algèbres Exotiques
et Systèmes à Evènements Discrets”, Issy-les-Moulineaux, France, 1987.

[14] G.J. Olsder, “Some results on the minimal realization of discrete event
systems”, 25th IEEE Conf. on Decision and Control, Athens, Greece, 1986.

[15] G.J. Olsder, J.A.C. Resing, R.E. de Vries, M.S. Keane and G. Hooghiem-
stra, “Discrete event systems with stochastic processing times”, submitted
to 27th IEEE Conf. on Decision and Control, Austin, Texas, 1988.

47

[16] G.J. Olsder, C. Roos, “Cramer and Cayley-Hamilton in the max-algebra”,
to appear in Linear Algebra and its Applications, 1988.

[17] C.V. Ramamoorthy and G.S. Ho, “Performance evaluation of asynchronous
concurrent systems using Petri nets”, IEEE Trans. on Software Engineer-
ing, Vol. SE–6, pp. 440–449, 1980.

[18] H.Straubing, “A combinatorial proof of the Cayley-Hamilton theorem”,
Discrete Mathematics, Vol. 43, pp. 273-279, 1983.

[19] R.P. Wiley and R.R. Tenney, “Performance evaluation of decision-free
stochastic timed Petri nets”, 24th IEEE Conf. on Decision and Control,
Ft. Lauderdale, Florida, 1985.

48

