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Abstract. We show that car traffic on a town can be modeled using a
Petri net extension where arcs have negative weights. The corresponding
minplus dynamics is not linear but homogeneous of degree one. Possibly
depending on the initial condition, homogeneous of degree 1 minplus sys-
tems may be periodic or have a chaotic behavior (to which corresponds
a constant throughput) or may explode exponentially. In traffic sys-
tems, when this constant throughput exists it has the interpretation of
the average car speed. In this first part we recall the derivation of the
1-homogeneous dynamics of traffic system and show that may exist such
systems with chaotic behavior having a constant throughput.

1. Introduction

The traffic on a road has been studied with different points of view at
macroscopical level for example :

• The Lighthill-Whitham-Richards Model [6] is the more standard
one {

∂tρ + ∂xq = 0 ,

q = f(ρ),

where q(x, t) = denotes the flow at time t and position x on the
road, ρ(x, t) = denotes density, f is a function given, called the
fundamental traffic law. It plays for traffic the role of the perfect
gas law for the fluid dynamics.

• The kinetic model (Prigogine-Herman [7]) gives the evolution of the
density of particles ρ(t, x, v) as a function of t, x and v the speed of
particle

∂tρ + v∂xρ = C(ρ, ρ) ,

where C(ρ, ρ) is an interacting term in general quadratic in ρ.
The second model is more costly in term of computation time and there-

fore not used in practice. The first one suppose the knowledge of the func-
tion f . This function has been studied experimentally or theoretically using
simple microscopic model. Here, we will recall a way to derive a good ap-
proximation of this law from a simple minplus linear system based on a Petri
net.
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The main purpose of this paper is to generalize this fundamental law to
the 2D cases where roads have crossings. The original minplus linear model
on a unique road cannot be generalized easily in term of Petri nets. We have
proposed in a previous paper a way to solve the difficulty by using Petri net
with negative weights. The dynamics of these Petri net can be written
easily but are not anymore linear in minplus algebra but are homogeneous
of degree 1. We recall here the derivation of these 1-homogeneous dynamics.

In the first part of this paper we show that we can compute the eigenval-
ues for these 1-homogeneous system but that chaotic dynamics may appear.
In the second part we discuss the phases appearing in the fundamental dia-
gram, obtained numerically, and describe new situations where we can prove
that the system is periodic.

2. Traffic on a circular road

Let us recall the simplest model to derive the fundamental traffic law
on a single road. The simplest way is to study the stationary regime on a
circular road with a given number of vehicles and then to consider that this
stationary regime is reached locally when the density is given on a standard
road. We present two way to obtain this law : – by logical deduction from
an exclusion process, – by computing the eigenvalue of a minplus system
derived from a simple Petri net describing the road with the vehicles.
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Figure 1. A circular road.

2.1. Exclusion process modeling. Following [3] we can consider the
dynamic system defined by the rule 10 → 01 apply to a binary word de-
scribing the car positions on a road cut in section (each bit representing a
section 1 meaning occupied and 0 meaning free see II in Figure 1). Let us
take an example :

m1 = 1101001001, m2 = 1010100101, m3 = 0101010011,

m4 = 1010101010, m5 = 0101010101,

Let us define : – the density ρ the number of vehicles n divided by
number of places m : ρ = n/m, – the flow q(t) at time t the vehicle number



going one step forward at time t divided by the place number. Then the
fundamental traffic law gives the relation between q(t) and d.

If ρ ≤ 1/2, after a transient period, all the vehicle groups split off, and
then all the vehicles can move forward without other vehicles in the way,
and we have :

q(t) = q = n/m = d .

If ρ ≥ 1/2, the free place groups split off after a finite time and move
backward without other free place in the way. Then m − n vehicles move
forward and we have

q(t) = q = (m− n)/m = 1− d .

Therefore :

∃T : ∀t ≥ T q(t) = q =

{
ρ if ρ ≤ 1/2 ,

1− ρ if ρ ≥ 1/2 .
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Figure 2. The fundamental traffic law.

2.2. Event Graph modeling. Consider the Petri net given in III of
Figure 1 which describes in a different way the same dynamics. In fact this
Petri net is an event graph and therefore its dynamics is linear in minplus
algebra. The vehicle number entered in the place i before time k is denoted
xk

i . The initial vehicle position is given by booleans ai with takes the value
1 when the cell contains a vehicle and 0 otherwise.

We use the notation ā = 1− a, then the dynamics is given by :

xk+1
i = min{ai−1 + xk

i−1, āi + xk
i+1} ,

which can be written linearly in minplus algebra :

xk+1
i = ai−1x

k
i−1 ⊕ āix

k
i+1 .

This event graph has three kinds of elementary circuits : – the outside
circuit with average mean n/m, – the inside circuit with average mean (m−
n)/m, – the circuits corresponding to make some step forward and coming
back, with average mean 1/2, Therefore its eigenvalue is

q = min(n/m, (m− n)/m, 1/2) = min(ρ, 1− ρ) ,

which gives the average speed as a function of the car density.



3. 2D traffic

Let us generalize the second approach to derive the fundamental diagram
to a regular town describe in Figure 3. The complete town can be modeled

BLOC (I,J)

Figure 3. A town.

as a set of subsystems corresponding to a unique crossing and two adjacent
roads. To write the dynamics of the town we have first to give the Petri net
describing a crossing.

A first trial is to consider the Petri net given in Figure 4. This Petri
net is not anymore an event graph but following L. Libeaut[5] it is possible
to write the nonlinear implicit minplus equation describing a general Petri
net. In the case where the multipliers are all equal to one it is :

(1) min
p∈xin

ap +
∑

x′∈pin

x′(k − 1)−
∑

x′′∈pout

x′′(k)

 = 0, ∀x ,∀k.

where x(k) denotes the firing number of transition x and p a place of the
Petri Net. But these equations does not determine completely the dynamics
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Figure 4. A simplified crossing.

since the Cauchy problem has not a unique solution. Indeed : – at place an

we may have a routing policy giving the proportion of cars going towards
y2 and the proportion going towards y3 (which is not described by the Petri
net 4) – at place ān we may follow the first arrived the first served rule with



the right priority if two cars arrive simultaneously at the crossing (which is
also not described by the Petri net 4).

Precising the dynamics of Petri net in such way that the trajectories are
uniquely defined corresponds to give another Petri net having only one arc
leaving each place. Let us discuss more precisely these points on a simple
system given in the first picture of Figure 5.
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Figure 5. Dynamic Completion.

The incomplete dynamics of this system can be written in minplus al-
gebra xn

4xn
3 = axn−1

1 xn−1
2 . Clearly x4 and x3 are not defined uniquely. We

can complete the dynamics, for example, in the two following ways useful
for the traffic application : – by precising the routing policy

xn
4 = xn

3 =
√

axn−1
1 xn−1

2

– by choosing a priority rule{
xn

3 = axn−1
1 xn−1

2 /xn−1
4

xn
4 = axn−1

1 xn−1
2 /xn

3 .

In the two cases we obtain a degree one homogeneous minplus system.
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Figure 6. A Complete Crossing.



This method can be applied to the crossing and we obtain a Petri net
with negative weights which has only one arc leaving each place (that we
call deterministic Petri net) see Figure 6.

Neglecting the roundings the system can be written with minplus nota-
tions : 

xi/δ = ai−1xi−1 ⊕ āixi+1,

xn/δ = ānx1xn+1/x2n ⊕ an−1xn−1 ,

x2n/δ = ā2nx1xn+1/(xn/δ)⊕ a2n−1x2n−1 ,

x1/δ = an
√

xnx2n ⊕ ā1x2 ,

xn+1/δ = a2n
√

xnx2n ⊕ ān+1xn+2 ,

where δ denotes the forward shifting operator acting on sequences. It is a
general degree 1 homogeneous minplus system.

Simulation of this system starting from 0 shows that

lim
k

xk
i /k = λ, ∀i .

The constant λ has the interpretation of the average speed. The fundamental
diagram gives the relation between the average speed and the vehicle density
of the system. In Figure 7 we give this law in the cases of two circular roads
with one crossing for different relative size of the two roads. We see that
three phases appear on each fundamental diagram. These phases will be
discussed in the second part of this paper. The experimental existence
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Figure 7. 2D-traffic fundamental diagrams.

of this λ motivates the study of the eigenvalue of 1-homogeneous minplus
system.

4. Eigenvalues of 1-homogeneous minplus systems

The eigenvalue problem for 1-homogeneous system f : Rn
min 7→ Rn

min can
be formulated as finding x ∈ Rn

min non zero, and λ ∈ Rmin such that :

λx = f(x) .

Since f is 1-homogeneous, supposing without loss of generality that if x
exists x1 6= ε, the eigenvalue problem becomes :

λ = f1(x/x1) ,

x2/x1 = (f2/f1)(x) ,

· · · = · · ·
xn/x1 = (fn/f1)(x) ,



Denoting y = (x2/x1, · · · , xn/x1) the problem is reduced to the computation
of the fixed point problem y = g(y) (with gi−1(y) = (fi/f1)(0, y)) to compute
a normalized eigenvector from which the eigenvalue is deduced by : λ =
f1(0, y). But now g is a general minplus function.

The fixed point problem has not always a solution. There are cases
where we are able to solve the problem – f is affine in standard algebra, –
f is minplus linear, – f is positive power function. In the first case there is
a unique eigenvalue as soon as dim(ker(f − I)) = 1.

In the two last cases, the problem can be reduced to the minimization
of the average cost by time unit using dynamic programming methods. The
corresponding fixed points are unique and stable.

Moreover, since max(x, y) = xy/(x ⊕ y) games problem are also 1-
homogeneous minplus systems and the solution of the corresponding eigen-
value problem is known.

In the general case we may have unstable fixed points that, nevertheless,
we can compute by Newton method (which is exactly the policy iteration)
but which don’t give the information about the asymptotic behavior of the
system anymore. In this case the asymptotic is obtained by an averaging
based on invariant measure which may be difficult to compute. Let us give
an example of chaotic system which has a 1-homogeneous minplus dynamics.

5. A Chaotic system example

Let us consider the 1-homogeneous minplus dynamic system{
xk+1

1 = (xk
1)

2/xk
2 ⊕ 2(xk

2)
3/(xk

1)
2 ,

xk+1
2 = xk

2 .

The corresponding eigenvalue problem is{
λx1 = x2

1/x2 ⊕ 2x3
2/x2

1,

λx2 = x2 .
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Figure 8. Cycles of tent transformation.

The solutions are λ = 0 and y = x1/x2 satisfying the equation

y = y2 ⊕ 2/y2,



which has for solutions y = 0 and y = 2/3. These two solutions are unstable
fixed points of the transformation f(y) = y2⊕ 2/y2. But the system yn+1 =
f(yn) is a chaotic system since f is the tent transform (see [2] for example
for a clear discussion of this dynamics). In Figure 8 we show the graph of f ,
f ◦f , f ◦f ◦f , their fixed points and the corresponding periodic trajectories.

In Figure 9 we show a trajectory for an initial condition chosen randomly
with the uniform law on the set {(i− 1)/105, i = 1, · · · , 105}. The diagonal
line in the picture is a decreasing sort applied to the trajectory. It shows
that the invariant empirical density is uniform. We can prove that the tent
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Figure 9. A tent iteration trajectory.

iteration has a unique invariant measure absolutely continuous with respect
to the Lebesgue measure : the uniform law on [0, 1].

More generally a chaotic 1-homogeneous minplus system will grow lin-
early with a value λ given by :

λ =
∫

f1(y)dµ(y) ,

where µ is the invariant probability measure of y depending on the initial
value y0. For example, according to the initial value y0, the tent iterations
yk stay in circuits or follow trajectories without circuit (possibly dense in
[0, 1]).
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Other informations and articles about this max-plus algebra are available
from the web page : http://maxplus.org.


