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1 Introduction

We consider the problem of toll setting that faces the operator of a privately
owned transportation network in order to maximize its profit. As the users
of the network rationally react to the imposed prices, the tolls should be high
enough to have a good income but not so much as compelling the users not
to use the tolled arcs or the network at all.

In [4] this problem is considered in the case that users choose the shortest
route which means that congestion is neglected. This assumption allows them
to cast the problem into the class of bilevel optimization problems where both
objective functions are bilinear.

In this work we introduce congestion effects through the assumption that
travel times depend on the flow and we suppose that the users choose their
routes according to the standard Wardrop principle.

We will show that the mathematical problem, which is no longer bilinear-
bilinear, can be seen as the maximization of a non-concave function which
in general has an infinity of local optima which are very far from the global
optimum. Indeed, we study the geometric properties of the upper level ob-
jective function defined implicitly as a function of the toll and we show that
its non-quasi concavity is an important drawback for standard algorithms.

∗INRETS, Institut de Recherche sur les Transports et leur Sécurité, Arcueil, France.
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Nevertheless we prove that the problem has interesting geometric prop-
erties that can help in the search for a global optimum. Using an analytical
characterization of the lower level solution we determine the cases where
the problem is well posed and we propose an algorithm that converges glob-
ally to the solution. We illustrate our work with two examples made upon
Braess-like networks.

2 The model

2.1 Traffic assignment

Given a transportation network, the traffic assignment problem(TAP) con-
sists in determining a flow that satisfies a given demand between certain pairs
of origins and destinations and a certain criterion. Let us consider a traffic
network represented by the graph (N ,A) where N is the set of nodes and A
is the set of directed arcs (links). Each arc a is associated with the positive
real number ta (f) which is the travel time of the link as a function of the
network flow f. For certain pairs of nodes (p, q) there is a positive flow de-
mand dpq from p to q. We call C ⊂ N ×N the set of origin-destination pairs
and we associate each pair with a commodity. The TAP is now to determine
a network flow fulfilling the travel demands and a prescribed performance
criterion

The performance criteria normally considered are two attributed to War-
drop. The first one, based on the rational behavior of traffic, states that the
users seek to minimize their own travel times and it is known as the user

equilibrium. The second one, known as the system equilibrium, calls for the
minimization of the total travel time. Even if those criteria are behaviorally
very different models that use both of them have been very well studied in
the context of Marginal Toll Pricing, where tolls are imposed in order that
”selfish” routing approach ”social” routing (see [2] and [8]).

In this work we focus on the first principle of Wardrop whose mathemat-
ical formulation can be written as

min T (x) =
∑

a∈A

∫ xa

0
ta (s) ds (xa)

s.t.
Axpq = d̄pq,

x ≥ 0,∑
(p,q)∈C xpq = x.

(1)

where A is the node incidence matrix and d̄ is the vector of node potentials
corresponding to the commodities.
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2.2 Profit optimization

If a toll pa (possibly 0) is charged to each car traversing the arc a, the total
profit will be pT x =

∑
a∈A paxa. If we make the simplifying assumption that

tolls are expressed in time units, the travel times changes accordingly being
now ta + pa. So for each given level of tolls there will be a traffic assign-
ment and we can look for the toll that will maximize the total profit. More
precisely, we have to find the value of p such that pT x(p) =

∑
a paxa(p) is

maximum where x(p) is the solution of the TAP parameterized by p, i.e., the
problem (1) where the travel time functions are now t(·)+p. As the problem
(1) has a unique solution for each p, we have that x(p) is differentiable and
the convexity of T and the linearity of the constraints also imply that it is
convex (see [6]).

3 Analytical characterization of the solutions

In order to obtain an analytic formula for the solution of the lower level
problem we will suppose that the travel time functions are linear (affine). A
more general problem could be then approximated by linear functions and
capacity constraints. In this case, using vectorial notation, the problem (1)
can be rewritten more compactly as

min
x∈X

1

2
xT Qx + (b + p)T x ,

where Q is a diagonal matrix with Qaa = qa and b = (ba) a vector such
that ta(xa) = qaxa + ba, p is the vector of prices over the arcs, and X is the
polyhedron defined by the constraints in (1), i.e., X = {x|Ax = d̄, x ≥ 0}.

For p ∈ R
n the lower level problem has a unique solution x(p) given by

x(p) = ProjQX(−Q−1(p + b)) = −Q−1[ProjQ
−1

P (p) + b] . (2)

Thanks to this formula we immediately see that in general for many prices
we will have the same distribution of traffic (for any p ∈ NP (p̄), the normal
cone to P in p̄ ∈ P ), which explains the infinity of local minima (when
x(p̄)⊥ ∩ NP (p̄) is non empty). It can be also proved that the profit function
will be the supremum of concave functions. It the figure (1) we present the
function pT x(p) and the subdivision of the p-domain such that the function
is quadratic and concave (maybe linear) in each region.

Let P be the polyhedron in the price space given by P = −QX + b. For
p ∈ P easily follows that x(p) = −Q−1(p + b) and so the profit function will
be quadratic and concave inside P . What’s more, restricted to P , there is
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a) Graph of the profit function b) domain subdivision

Figure 1: The profit function, and the regions where it is quadratic concave.

a bijective relation between prices and flows and for any p we can obtain a
p̄ ∈ P that gives the same profit. The idea behind the algorithm is to exploit
this biunivocity between flows and prices, i.e. between X and P .

4 Numerical applications

Intuitively we can see that when the problem is well posed, each commodity
has at least one route without tolled arcs. Otherwise the profit can be made
as high as the operator may want. Hence tolls have to be collected only in
a subset of arcs or equivalently some prices must be constrained to be zero.
Models that consider elastic demand are always well posed, that is clear
because to put them in our formalism one artificial arc must be added for
each commodity, and these artificial arcs will constitute a non tolled route.

We call the set of admissible prices Pad. Using the above formula we give
an analytic condition in terms of Pad and X for the problem to be bounded.
We further show that when the problem is bounded the optimal values of p

are located inside or in the boundary of a polyhedron P̄ easily deduced from
P . Numerically the projections can be made using any traffic assignment
algorithm and then replacing the value of x in the formula (2). An immediate
consequence of this result is that we have a criterium to discard non-global
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local optima.
For example in [1], the authors present an heuristic to find the global

optimum based on a cyclic decomposition, i.e., at each step only one price
is globally optimized (with an external global optimizer). So knowing the
region of interest will be very helpful in reducing the calculation time.

In order to have a non heuristic algorithm we propose to use first order
information obtained from the formula (2). The problem is that, at least
formally, there is no formula for the projection operator PP . Inspired by the
reduced gradient method we propose to find the direction of maximal ascent,
i.e., the value of d such that ∇R(p)T d be maximum. Now instead of the
gradient we need its product by d which is the directional derivative in the
direction d, and that can be computed thanks to Zarantonello formula (see
[3]).
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Figure 2: The networks taken as examples

5 Conclusion

Numerical tests have been performed in small cases that can also be solved
analytically (see figure 2). In order to validate these results and test them
with huge networks a big effort must still be done. Nonetheless, some ideas
can be anticipated. The combinatorial objects referenced above are inti-
mately related to the network topology. Indeed, the vertices of the polyhedra
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X and P corresponds to the routes and the exposed face of P for a price
p corresponds to the used routes after traffic assignment with toll price p.
Even if the enumeration of routes is prohibitive in any standard network, it
can be bypassed because the used routes are a byproduct of certain traffic
assignment algorithms as DSD (Disaggregated Simplicial Decomposition, see
[7, 5]), and a traffic assingment algorithm is needed to calculate projections.

We present an analytical formula for the solution of a particular bilevel
problem that appears when modelling an optimal toll setting problem. Among
the numerical applications of this result we can state the computing time
reductions in the exploration of heuristic algorithms and the design of a sub-
gradient algorithm that converges globally.
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