
A MIN-PLUS DERIVATION OF THE FUNDAMENTAL CAR-TRAFFIC LAW 1

A Min-Plus Derivation of the Fundamental
Car-Traffic Law

Pablo A. Lotito†∗, Elina M. Mancinelli‡\ and Jean-Pierre Quadrat‡

pablo.lotito, elina.mancinelli, jean-pierre.quadrat@inria.fr
† GRETIA-INRETS, 2 Av. G. Malleret-Joinville - 94114 Arccueil France

‡INRIA, Domaine de Voluceau - Rocquencourt - B.P. 105 78153 Le Chesnay Cedex France

\ CONICET, Argentina

Abstract— We give deterministic and stochastic models of the
traffic on a circular road without overtaking. From this model
the mean speed is derived as an eigenvalue of the min-plus matrix
describing the dynamics of the system in the deterministic case
and as the Lyapunov exponent of a min-plus stochastic matrix in
the stochastic case. The eigenvalue and the Lyapunov exponent
are computed explicitly. From these formulae we derive the
fundamental law that links the flow to the density of vehicles
on the road. Numerical experiments using theMAX PLUS toolbox
of SCILAB confirm the theoretical results obtained.

I. I NTRODUCTION

For simple traffic models a well known relation exists
between the flow and the density of vehicles calledFunda-
mental Traffic Law. This law has been studied empirically and
theoretically using exclusion processes (see for example [5],
[6], [7], [3], [12], [8]) and cellular automata (see [1]).

In this work we analyze the simplest deterministic and
stochastic traffic models using the so calledmin-plus algebra.
Within this algebra the equations of the dynamics become
linear and the eigenvalue or the Lyapunov exponent of the
corresponding min-plus matrix gives the mean speed from
which we easily derive the density-flow relation.

The traffic model consists ofN cars on a circular road
of unitary length. In the deterministic case all cars want to
move at a common desired given velocityν, and must respect
a safety distance ofσ with respect to the car ahead. In the
stochastic model the cars choose their velocities randomly and
independently between two possible valuesη andν (with η <
ν), respectively with probabilities(µ, λ). We consider here
only the case where the cars are not allowed to overtake other
cars.

First, in the deterministic case, the fundamental law is de-
rived from the explicit computation of the min-plus eigenvalue
of the matrix describing the dynamics of the system.

Next we study the stochastic model showing that the average
speed is the Lyapunov exponent of a stochastic min-plus
matrix. In general, it is very difficult to compute a Lyapunov
exponent. In our case, it is possible to characterize completely
the stationary regime and from this characterization to obtain
the Lyapunov exponent. The fundamental traffic law is then
easily derived from this result.

The analysis of the deterministic model in terms of eigen-
values of a maxplus matrix is new, but the model and the

∗ Work done during the sojourn of the first author at Inria-Rocquencourt

results are very close1 to [3]. In Nagel-Hermann [11] more
realistic deterministic models are studied. The state is defined
by the vehicle position and its speed instead of only the
position. Nevertheless we obtain also a typical hat-shaped
fundamental traffic law. This fact suggests that the acceleration
is not fundamental in first order approximations. In fact, in
Nagel-Hermann we see that in the stationary regime, for the
parallel updating rule (the one used here), the system reaches
the maximal allowed speed.

The stochastic model proposed is new. Its interest is mainly
theoretical since the traffic law obtained is a smoothed version
of the hat shape obtained in the deterministic case. The
complete analysis can be done only in the simple case when
the speed, which is random, can take only two values and when
the size of the vehicles is zero. But numerical experiments
show that improving the model of speeds and giving a non-
zero size to the cars has a negligible influence. Moreover, the
analysis in the oversimplified but feasible case used here is
qualitatively very informative. The more realistic stochastic
model of Nagel-Schreckenberg [12] gives the same kind of
traffic law, but the analysis can be done only by numerical
experiments. Derrida in [5], [6], [7] gives a complete theoret-
ical analysis of an exclusion stochastic process modelling of
traffic which is different from the one proposed here (a vehicle
is characterized only by its position and can jump ahead with a
given probability if the position ahead is free). In the Derrida
model, the process is ergodic and the invariant probabilistic
measure can be computed explicitly. Here the process is not
ergodic. But we can characterize the stationary regimes and
determine completely the invariant measures.

II. D ETERMINISTIC MODELLING

We considerN cars moving on a one-way circular road of
length 1. Each car, indexed byn = 1, · · · , N , has a desired
speedν, a size0, and must respect a security distanceσ with
the car ahead (Nσ ≤ 1). A discrete time dynamic model is
used where, at each unitary time stept, the driver tries to cover
the distanceν taking into account that it cannot overtake the
car ahead. The total distance covered at timet by car n is
denotedxt

n. In order to determine the dynamics of the system,
we have to know at what precise instant the safety distances
have to be verified. We consider two cases :

1In our model there are no cells, but the Blank’s cell model is also maxplus
linear and can be analyzed by the same method and gives the same traffic
law.
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i) The move of the driver ahead is anticipated(at time t
the drivern knows the position that will have the car
ahead at timet + 1). Having in mind that the road is
circular and that its length is one2, the covered distances
are given by :

xt+1
n =

{
min

(
xt

n + ν , xt+1
n+1 − σ

)
, if n < N ,

min
(
xt

N + ν , xt+1
1 + 1− σ

)
, if n = N .

(1)
ii) The move of the driver ahead is not anticipated. The

distances covered by the cars are :

xt+1
n =

{
min

(
xt

n + ν , xt
n+1 − σ

)
, if n < N ,

min (xt
N + ν , xt

1 + 1− σ) , if n = N .
(2)

For these two models we will derive a relation between the
car density and the average car flow, that will correspond to
the fundamental traffic law in traffic theory.

III. M IN-PLUS ALGEBRA

To derive the fundamental traffic law we need to compute
the eigenvalue of a min-plus matrix describing the dynamics
of the traffic system. In this section we present the principal
definitions and properties of the min-plus algebra. The reader
is referred to [2] for an in-depth treatment of the subject. A
min-plus algebra is defined by the setR ∪ {+∞} together
with the operationsmin (denoted by⊕) and + (denoted by
⊗). The elementε = +∞ satisfiesε⊕x = x andε⊗x = ε (ε
acts as zero). The elemente = 0 satisfiese⊗ x = x (e is the
identity). The main difference with respect to the conventional
algebra is thatx⊕ x = x (idempotency). We denoteRmin =
(R ∪ {+∞} ,⊕,⊗) this structure.Rmin is a special instance
of dioid (semiring with idempotent addition).

This min-plus structure on scalars induces a dioid struc-
ture on square matrices with matrix productA ⊗ B, for
two compatible matrices with entries inRmin, defined by
(A⊗X)ik = minj (Aij + Bjk) , where the unit matrix is
denoted E. We associate to a square matrixA a precedence
graphG(A) where the nodes correspond to the columns (or
the rows) of the matrixA and the arcs to the nonzero entries
(the weight of the arc(i, j) being the non zero entryAji). We
define|p|w the weight of a pathp in G(A) as the sum of the
weights of the arcs composing the path. The arc number of
the pathp is denoted|p|l. We will use the three fundamental
results resumed in the following Proposition (see [2]):

Proposition 1: Let A be a(N×N)-Rmin-matrix, andC the
set of circuits ofG(A). We have :

i) If the weights of all the circuits are positive, the equation
x = A⊗x⊕b admits a unique solutionx = A∗⊗b where
A∗ = E⊕A⊕· · ·⊕AN−1⊕· · · = E⊕A⊕· · ·⊕AN−1 .

ii) If G(A) is strongly connected, the matrixA admits a
unique eigenvalueλ ∈ Rmin:

∃ x ∈ RN
min : A⊗ x = λ⊗ x with λ = min

c∈C

|c|w
|c|l

; (3)

2This explains the ”+1” in (1) and (2).

and the min-plus linear dynamic systemXt+1 = A⊗Xt

is asymptotically periodic:

∃ T,K : ∀k ≥ K : Ak+T = λT ⊗Ak .

IV. T HE FUNDAMENTAL TRAFFIC LAW IN THE

DETERMINISTIC NON ANTICIPATIVE CASE

Using the min-plus notation, the dynamics of the traffic in
the non anticipative case given by equation (2) may be written
in scalar form as follows:

xt+1
n =

{
ν ⊗ xt

n ⊕ (−σ)⊗ xt
n+1, if n < N,

ν ⊗ xt
N ⊕ (1− σ)⊗ xt

1, if n = N .
(4)

In vectorial form, definingXt =
[
xt

1, . . . , x
t
N

]′
, we have

Xt+1 = A⊗Xt , (5)

with

A =


ν −σ

...
...
... −σ

1− σ ν


where the missing entries areε. The precedence graph asso-
ciated withA is given in Figure 1.
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Fig. 1. Precedence Graph ofA.

In order to use the results given in the Proposition 1 we have
to compute the circuits of the graph. The elementary circuits
are the loops, of weightν, and the complete circuit weighting
1−Nσ. Using the eigenvalue formula (3), the eigenvalue of
A is:

λ = min
(

ν,
1−Nσ

N

)
. (6)

Considering that the minimal space needed by a car on the
road isσ, the car densityd is Nσ divided by the length of
the road, taken equal to 1, therefored = Nσ. The average
flow is equal to the car density times the average speed, that
is f = λNσ. Then, replacing in (6) we obtain the fundamental
traffic law :

f = min{νd, σ(1− d)} .

Therefore, using this min-plus model, we find again the
results presented in [3].
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V. THE FUNDAMENTAL TRAFFIC LAW IN THE

DETERMINISTIC ANTICIPATIVE CASE

Using min-plus notation, the dynamics of the traffic in the
anticipative case may be written

Xt+1 = A⊗Xt+1 ⊕B ⊗Xt , (7)

where

A =


ε −σ

ε
...
... −σ

1− σ ε

 , B =


ν

...
...

ν

 .

This is an implicit system, to obtain an explicit system we
have to computeA∗ (see Proposition 1-i or [2]). The existence
of A∗ is verified if and only if there is no circuit with negative
weight in G(A), that is, if 1 − Nσ ≥ 0, which is true by
assumption. This condition means that there is enough place
on the road for theN cars. The explicit form of the equation
is :

Xt+1 = A∗ ⊗B ⊗Xt. (8)

The mean speed of the cars is theRmin eigenvalue ofA∗⊗B
which can be easily verified to be equal toν, therefore in this
case, the fundamental traffic law is given byf = νd. This is
an involved application of Theorem 3.28 in [2], nevertheless
the result can be guessed without any computation. Indeed,
in this deterministic anticipative case, all the cars can move
with speedν, (at the initial time the cars respect the security
distance and they can move all together at speedν respecting
the safety distance).

VI. STOCHASTIC MODELLING

Now we suppose that at each unitary time stept, each driver
n chooses his desired speedvt

n independently and randomly
between{η, ν} with probabilities{µ, λ}, η ≤ ν. That is, the
random variables{vt

n}, with n = 1, · · · , N and t ∈ N, are
i.i.d. Bernoulli random variables. We suppose that3: (a) η = 0,
(b) that the safety distance is 0 (this means that two cars may
be in the same position), (c) the drivers may anticipate the
move of the car ahead. Then, the dynamics of the system is
given by :

xt+1
n =

{
min

(
vt

n + xt
n , xt+1

n+1

)
, if n < N ,

min
(
vt

N + xt
N , 1 + xt+1

1

)
, if n = N .

(9)
This system is still linear in the min-plus algebra but now it
is stochastic. Within this algebra the formula (9) becomes

xt+1
n =

{
vt

n ⊗ xt
n ⊕ xt+1

n+1 , if n < N ,

vt
N ⊗ xt

N ⊕ 1⊗ xt+1
1 , if n = N .

(10)

3The assumption (a) is justified by the standard change of variables
x = x′ + ηt′, t′ = t. The assumption (b) allows us to obtain interesting
mathematical results . The more general case (σ 6= 0) can be analogously
modelled (see section X) and numerical experiments have shown that the
qualitative results are similar. The assumption (c) is more realistic and can
be analyzed mathematically but the non anticipative case is easier to analyze
and gives the same kind of fundamental car-traffic laws.

Defining: Xt =
[
xt

1, . . . , x
t
N

]′
,

A =


ε e

...
...
... e

1 ε

 , Bt = B(vt) =


vt
1

vt
2

...
vt

N

 ,

where the missing entries areε, we can rewrite the equations
more compactly as

Xt+1 = A⊗Xt+1 ⊕Bt ⊗Xt . (11)

In our caseA∗ is easy to compute

A∗ =


e e · · · e

1
...

...
...

...
... e

1 · · · 1 e

 .

Then,
Xt+1 = Ct ⊗Xt , (12)

with Ct = A∗ ⊗Bt.
Using the fact that the matricesCt are all irreducible

(because there are no zero entries inCt) we know by Corollary
7.31 of [2] that :

lim
t

xt
n/t = v̄, ∀n ,

wherev̄ is called the Lyapunov exponent of the stochastic min-
plus matrixC (with (Ct)t∈N, independent samples ofC).

In general, there is not a known method to compute ex-
plicitly the Lyapunov exponent. Explicit formulæ involving
computation of expectations are given in [10], but there is no
way to compute explicitly these expectations. Nevertheless,
here we are able to characterize the stationary regime ofXt.
This allows us to compute explicitly the expectation appearing
in v̄.

VII. JAM REGIME

In order to represent graphically the system state we use the
diagrams shown on Figures 2 and 3 where :

i) each segment outside the outer ring has a length propor-
tional to the number of cars in that position;

ii) the black (blue) [resp. grey (green)] length of segments
between the two rings are proportional to the number of
cars with desired speed0 [resp.ν];

In Figure 2 we show the evolution of the system for 100
cars with speeds0 andν = 1/3.

t=0 t=10 t=100 t=500

Fig. 2. Evolution of the system with 100 cars andν = 1/3.

In Figure 3 we show the evolution of the system for 50 cars
with speeds0 andν = 0.3.
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t=0 t=10 t=100 t=1000

Fig. 3. Evolution of the system with 50 cars andν = 0.3.

Definition 1: We call state the set of positions of the cars
on the circle. We calljam state, a state where the cars are
concentrated ink clusters, possibly empty, wherek =

⌈
1
ν

⌉
is

the upper round of1/ν. The positions of the clusters are given
by {π1, · · ·πk} with πi+1 − πi = ν for i = 1, ..., k − 1. In
such a jam state the distance between two clusters isν except
for at most one pair where the distance isγ = 1− (k − 1)ν.
When 1/ν ∈ N we say that the jam state isregular, and the
distance between all the clusters isν.

Definition 2: When for allt ≥ T the system stays in a jam
state we say that afterT the system is in ajam regime.

Proposition 2: A jam state is characterized byδ(x) = 0,
where

δ(x) = min
h=1,··· ,N

 ∑
j=1,··· ,N

j 6=h

{xj+1 − xj}

 ; (13)

{x} = x− ν
⌊x

ν

⌋
.

For non jam states we haveδ(x) > 0. Moreover

δ(XT ) = 0 ⇒ δ(Xt) = 0, ∀t ≥ T ,

that is, after reaching a jam state the system remains in a jam
regime.

Proof: It is easy to see thatδ(x) = 0 for a jam statex.
The question is then to show the converse. Let us suppose that
δ(x) = 0 by definition ofδ there is anh∗ such that∑

j 6=h∗

{xj+1 − xj} = 0 ,

we can suppose without loss of generality thath∗ = N , then
for every j 6= N , xj+1 − xj is a multiple of ν. Defining
k =

⌈
1
ν

⌉
, and considering that

1 ≥ xN − x1 =
N−1∑
j=1

xj+1 − xj ,

we have that there are at mostk−1 non zero termsj1, ...jk−1

which define thek−1 cluster in positionπ1 = xj1 , ..., πk−1 =
xjk−1 and the last clusterk is in positionxN . Therefore, the
system is in a jam state.

Suppose the system has reached a jam state. Then, all the
clusters are separated byν except for the clustersh andh+1
which are separated byγ. As the cars try to moveν, it is easy
to see that if the clusterh + 1 is not empty, all the clusters
will remain at the same relative position. If that cluster is
empty then only the relative positions of clustersh, h+1 and
h + 2 will change fromπh+1 − πh = γ, πh+2 − πh+1 = ν to

πh+1 − πh = ν, πh+2 − πh+1 = γ, remaining in a jam state.
�

The functionδ(x) can be seen as a sort of distance to a jam
regime and it verifies the following property.

Theorem 1:The sequencet 7→ δ(Xt) is non increasing.
The proof of the theorem is in Appendix 1.

Theorem 2:A jam regime is almost always reached, i.e.,
with probability one.

Proof: In order to prove that a jam regime is reachable, we
construct a finite sequence of independent events with positive
probability after which the system reaches a jam state. Then,
this finite sequence will appear with probability one in an
infinite sequence of events (Cantelli-Borel).

The dynamics of the system is given by the matrixC(ω) =
A∗B(v(ω)), whereB is the diagonal matrix of car desired-
speeds chosen randomly and independently between0 and
ν. Let us consider the matrixCj associated with the speed
(0 · · · 0, ν, 0 · · · 0) with ν in position j. All the matrices
Cj , j = 1 · · ·N have a strictly positive probability of occur-
rence.

Consider the finite sequence of independent events associ-
ated to the following matrix product, wherek is the number
of clusters,

Ck
1 Ck

2 ......Ck
N−2C

k
N−1 .

It is easy to understand why after these events, all the cars
are together in only one cluster. The last car(N) stays at the
same position, the previous car(N − 1) tries to movek times
ν joining the carN and so on. At the end all the cars will be
together in only one cluster obtaining a jam state.�

The particular jam state used in the proof, has only the
property of being easily characterized. Other jam states are
reachable with a higher probability.

VIII. T HE STATIONARY CAR DISTRIBUTION

Let us determine the stationary distribution of the population
of carsb = (b1, · · · , bk) in the k clusters.

Theorem 3:The stationary distribution ofb is uniform on
the simplex :

BN,k =
{
b | b.1 = N, b ∈ Nk

}
,

whereN is the total number of cars,k is the number of clusters
in the stationary regime and1 is a k-column vector of 1.

Proof: Let us consider the Markov chain where the states
belong toBN,k having {N+k−1

N nodes. Let us show that for
each outgoing arc from a node there is an incoming arc with
the same transition probability (which shows that the transition
matrix is bistochastic).

Outgoing: let us consider the transition from the stateb to
the stateb′. This state can be written asb′ = b−d+θd whereθ
denotes the circular shift of a vector,θ : d = (d1, · · · , dk) 7→
(dk, d1, · · · , dk−1) and d is the leaving cluster vector (this
means that there aredj cars that leave the clusterj to the
clusterj + 1). The probability of that event is

λ
P

dj µ
P

φ(bj−dj) whereφ(s) =
{

0 if s = 0 ,
1 otherwise.
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2
d

3
d

4
d 1

d

3
d

2
d 1

d

4
d

b −d +d 3 3 4

b −d +d 
4 4 1

b −d +d 
1 1 2

b −d +d 
2 2 3

b3

b4

b
2

b1

b3

b4

b
2

b
1 b −d +d 

23 3
b −d +d 
1 1 4

b −d +d 344

b −d +d 
2 2 1

Fig. 4. Equally probable transitions

Incoming: we consider now the stateb − d + θ−1d from
which we can reach the stateb with θ−1d as leaving cluster
vector. The probability of this event is

λ
P

dj µ
P

φ(bj−dj+dj+1−dj+1) ,

but φ(bj −dj +dj+1−dj+1) = φ(bj −dj) and thus it has the
same probability than the corresponding outgoing arc.

To complete the proof, we have to show that the map that
associates to each output arc an input one, is bijective. For
that, since the map is injective, let us show that the number of
outgoing arcs from a particular stateb is equal to the number
of incoming arcs to this state. The number of outgoing arcs
from b is the number of elements of the set{d | 0 ≤ d ≤ b}
where the order relation is considered componentwise. The
incoming arcs to stateb is given byd′ such that there exists a
stateb′ with b′−d′ + θd′ = b and0 ≤ d ≤ b′, but this implies
that 0 ≤ d′ ≤ b. Therefore, the set of incoming arcs tob is
defined by{d′ | 0 ≤ d′ ≤ b} which has the same cardinality
that the set of outgoing arcs fromb. �

IX. M EAN SPEEDCOMPUTATION

The knowledge of the distribution of probability ofn allows
the explicit computation of the mean speed. We do that in the
following theorem.

Theorem 4:For the regular case the mean speedv̄λ(N, k)
can be obtained recursively as

v̄λ(N + 1, k) =
λ

N + k
(1 + Nv̄λ(N, k)) , (14)

where v̄λ(1, k) = λν. Moreover for largeN we have the
asymptotic result

v̄λ(N, k) =
λ

Nµ
+ o(1/N) . (15)

Proof: Let us compute the mean speed. Consider a cluster,
the first car in the cluster leaves with probabilityλ increasing
the mean speed inλν/N , then the second car leaves this
cluster with probabilityλ2 increasing the mean speed in
λ2ν/N and so on. Then, the mean speed will beE(V ) where

V =
k∑

s=1

 bs∑
j=1

λj ν

N

 . (16)

Developing (16) we obtain

V = λ
ν

N

k∑
s=1

1− λbs

1− λ
=

λ

µ

ν

N

(
k −

k∑
s=1

λbs

)
and by linearity

v̄λ(N, k) = E(V ) =
λ

µ

ν

N
(k − Sk(N)) , (17)

where we have denoted

Sk(N) = E

(
k∑

s=1

λbs

)
. (18)

Using the fact that the probability distribution ofb is
uniform, we have that

Sk (N) = E

(
k∑

s=1

λbs

)
=
∑
BN,k

πN,k

k∑
s=1

λbs , (19)

where we have denotedπN,k =
(
{N+k−1

N

)−1
. Interchanging

the summation order we obtain

Sk (N) = πN,k

N∑
h=0

k∑
s=1

∑
BN,k

{
λh | bs = h

}
= πN,k

N∑
h=0

k∑
s=1

{N−h+k−2
N−h λh

= k πN,k

N∑
h=0

{N−h+k−2
N−h λh .

Now, for N + 1, we have

Sk (N + 1) = k πN+1,k

N+1∑
h=0

{N+1−h+k−2
N+1−h λh

= k(k−1)
N+k + k πN+1,k

N∑
h=0

{N−h+k−2
N−h λh+1

= k(k−1)
N+k + N+1

N+k λ Sk (N) .

Replacing the recursive formula ofSk in (17) we obtain (14).
To find the asymptotic result (15) we remark thatSk(N) goes
to 0 whenN goes to∞. �

As an example we obtain forN = 3 and k = 3 that
v̄λ(3, 3) = ν(6λ + 3λ2 + λ3)/10 , and forN = 4 andk = 4
v̄λ(4, 4) = ν(λ4 + 4λ3 + 10λ2 + 20λ)/35 .

X. EXTENSIONS AND NUMERICAL RESULTS

The previous analysis of the stochastic model may be done
also in the non anticipative case. It can be extended to the case
where the cars have a non negligible sizeσ. The models are
still stochastic min-plus linear, for example in the latter case,
we have :

xt+1
n =

{
vt

n xt
n ⊕ (−σ)xt+1

n+1 , if n < N ,

vt
Nxt

N ⊕ (1− σ)xt+1
1 , if n = N .

Using the formulæ obtained, or a simulator using the MAX -
PLUS SCILAB toolbox [14] we can plot the fundamental traffic
law in the different cases.
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f

d

λ=1

λ=0

Fig. 5. Flow as a function of the density in the stochastic anticipative case
for a continuation ofλ whenν = σ.

f

d

λ=1

λ=0

Fig. 6. Flow as a function of the density in the stochastic non anticipative
case for a continuation ofλ whenν = 3σ.

XI. CONCLUSION

For traffic engineers, the main result is the obtainment of a
realistic fundamental traffic law shape using a stochastic max-
plus linear model defined by four parameters : two possible
desired speeds chosen randomly and a security length between
the cars. This model can be still more simplified by taking only
one desired speed. These models give the typical hat shape of
the fundamental traffic law that can be adjusted by choosing
these four parameters.

For system engineers, we have given an application of
maxplus linear systems. The analysis of the deterministic
case is a straightforward application of known results about
maxplus algebra. On the other hand, the stochastic case is a
rare example where a Lyapunov exponent can be computed
explicitly.

XII. A PPENDIX: PROOF OFTHEOREM 1
Using the following notation for0 ≤ j < l ≤ N ,

∆l
j(x) =

l−1X
i=j

{xi+1 − xi}

and b∆l
j(x) = min

i

`
∆i

j(x) + ∆l
i+1(x)

´
,

the functionδ can be written as:

δ(x) = b∆N
1 (x),

where the car numberedN +1 is identified with the car1. If we call
hamperedat time t a carj such thatxt

j+1 − xt
j < vt

j , Theorem 1 is
an immediate consequence of the following lemma.

Lemma 1: At time t, for a sequence(j+1, · · · , l−1) of hampered
cars and for unhampered carsj and l we have :

∆l
j(x

t+1) ≤ ∆l
j(x

t), b∆l
j(x

t+1) ≤ b∆l
j(x

t) .

Proof:
i) ∆l

j(x
t+1) ≤ ∆l

j(x
t).

Indeed, in this case we have :

∆l
j(x

t) = {xt
j+1 − xt

j} + xt
l − xt

j+1 .

If car l moves ν, the cars j + 1, · · · , l − 1 move also
ν and whatever is the desired speed ofj we have
∆j

i (x
t+1) = ∆j

i (x
t).

If car l does not move, as{a + b} ≤ {a} + b and carj is
unhampered, then :

∆l
j(x

t+1) ≤ {xt
j+1 − xt

j} + xt+1
j+1 − xt

j+1 + ∆l
j+1(x

t+1) ,

moreover, as car l does not move we have :

∆l
j+1(x

t+1) ≤ xt
l − xt+1

j+1

= xt
l − xt

j+1 − (xt+1
j+1 − xt

j+1) ,

and the result follows.
ii) Denoting i an index reaching the minimum in the definition ofb∆l

j(x
t), we have:b∆l

j(x
t+1) ≤ ∆i

j(x
t+1) + ∆l

i+1(x
t+1)

≤ ∆i
j(x

t) + ∆l
i+1(x

t) = b∆l
j(x

t) .

�
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