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Abstract—We give deterministic and stochastic models of the results are very closeto [3]. In Nagel-Hermann [11] more
traffic on a circular road without overtaking. From this model  realistic deterministic models are studied. The state is defined
the mean speed is derived as an eigenvalue of the min-plus matrix by the vehicle position and its speed instead of only the
describing the dynamics of the system in the deterministic case iti N thel btai | tvpical hat-sh d
and as the Lyapunov exponent of a min-plus stochastic matrix in position. Never ,e ess W? obtain also a typical hat-s aPe
the stochastic case. The eigenvalue and the Lyapunov exponenfundamental traffic law. This fact suggests that the acceleration
are computed explicitly. From these formulae we derive the is not fundamental in first order approximations. In fact, in
fundamental law that links the flow to the density of vehicles Nagel-Hermann we see that in the stationary regime, for the
on the road. Numerical experiments using theMAXPLUS t00Ib0X  arg|lel updating rule (the one used here), the system reaches
of SciLaB confirm the theoretical results obtained. .

the maximal allowed speed.
The stochastic model proposed is new. Its interest is mainly
|. INTRODUCTION theoretical since the traffic law obtained is a smoothed version

For simple traffic models a well known relation existd! (he hat shape obtained in the deterministic case. The
between the flow and the density of vehicles calfathda- complete analysis can be done only in the simple case when

mental Traffic LawThis law has been studied empirically ancﬁhe speed, which is random, can take only two values and when

theoretically using exclusion processes (see for example [ € sizé Of, the vghlcles is zero. But numerical 'e>'<per|ments
6], [7], [3], [12], [8]) and cellular automata (see [1]). show t_hat improving the model_of spt_aeds and giving a non-
In this work we analyze the simplest deterministic anf®"© S|_ze_to the cars _has a negligible |r_1fluence. Moreover, the
stochastic traffic models using the so calleth-plus algebra analy3|§ in the oyer5|mpllf|ed but feasible case used herg 'S
Within this algebra the equations of the dynamics becorﬂéjalltatwely very informative. The more realistic stochastic

linear and the eigenvalue or the Lyapunov exponent of t}[iréOdeI of Nagel-Schreckenberg [12] gives the same kind of

corresponding min-plus matrix gives the mean speed fro‘irr"i‘ff'c law, but the analysis can be done only by numerical

which we easily derive the density-flow relation. experiments. Derrida in [5], [6], [7] gives a complete theoret-
The traffic model consists oV cars on a circular road ical analysis of an exclusion stochastic process modelling of

of unitary length. In the deterministic case all cars want t%aﬁic WhiCh. is different f.rom thg_one proposgd here ( veh_icle

move at a common desired given velocityand must respect is characterized only by its position and can jump ahead with a

a safety distance of with respect to the car ahead. In thegiven probability if thg positiqn ahead is 'free).. In the Der.ri.de'l
stochastic model the cars choose their velocities randomly amadel' the process is ergodic a_n_d the invariant probab!hstlc
independently between two possible valgesndy (with n < measure can be computed expllcnly. Here_ the process 1s not
v), respectively with probabilitiegy,, \). We consider here ergodlq. But we can chargcter!ze the stationary regimes and
only the case where the cars are not allowed to overtake OtﬂgFermlne completely the invariant measures.
cars. I
First, in the deterministic case, the fundamental law is de- ) ] )
rived from the explicit computation of the min-plus eigenvalue W& considerN' cars moving on a one-way circular road of
of the matrix describing the dynamics of the system. length 1. Each car, indexed by = 1,---, N, has a desired
Next we study the stochastic model showing that the avera%?fedy' a size0, and must respect a security distanceith
speed is the Lyapunov exponent of a stochastic min-plf€ car aheadNo < 1). A discrete time dynamic model is
matrix. In general, it is very difficult to compute a LyapunoWS€d where, at each unitary time stefhe driver tries to cover
exponent. In our case, it is possible to characterize completdlg distances taking into account that it cannot overtake the
the stationary regime and from this characterization to obtdid” @head. The total distance covered at timay carn is
the Lyapunov exponent. The fundamental traffic law is the#fnotedr, . In order to determine the dynamics of the system,
easily derived from this result. we have to knpyv at what precise instant the safety distances
The analysis of the deterministic model in terms of eigefi@ve to be verified. We consider two cases :

values of a maxplus matrix is new, but the model and thelin our model there are no cells, but the Blank’s cell model is also maxplus
linear and can be analyzed by the same method and gives the same traffic
x Work done during the sojourn of the first author at Inria-Rocquencouraw.

. DETERMINISTIC MODELLING
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i) The move of the driver ahead is anticipatét time ¢ and the min-plus linear dynamic systexit! = A@ X?
the drivern knows the position that will have the car is asymptotically periodic:
ahead at timg + 1). Having in mind that the road is i - )
circular and that its length is ofiethe covered distances AT, K :VE> K : A" =X @ A" .
are given by :
IV. THE FUNDAMENTAL TRAFFIC LAW IN THE
S min (x% +v, xf;fl — a) , if n< N, DETERMINISTIC NON ANTICIPATIVE CASE
" min (zhy +v, 2i" +1-0), fn=N. Using the min-plus notation, the dynamics of the traffic in

) _ _ o (1) the non anticipative case given by equation (2) may be written
i) The move of the driver ahead is not anticipatdthe in scalar form as follows:

distances covered by the cars are :

t i i
. . t+1 V®$n@(_0—)®xn+1, |f'fL<JV7
ot — mln(a:fl—ky,xfﬂ_l—o), ?fn<N, Tn {V®x§v@(1—0)®$ﬁ, if n=N. @
" min (zf; +v, 2t +1—-0), fn=N.
(2) In vectorial form, definingX* = [2f,... ,x‘}v]/ , we have
For these two models we will derive a relation between the - .
car density and the average car flow, that will correspond to Xt =A0 X', (5)
the fundamental traffic law in traffic theory. ith
wi
v —0
[1l. MIN-PLUS ALGEBRA
To derive the fundamental traffic law we need to compute A=
the eigenvalue of a min-plus matrix describing the dynamics -
of the traffic system. In this section we present the principal 1—0 v

definitions and properties of the min-plus algebra. The reader o )

is referred to [2] for an in-depth treatment of the subject. W/here the missing entries are The precedence graph asso-
min-plus algebra is defined by the SBtU {+oo} together Ciated withA is given in Figure 1.

with the operationsnin (denoted by$) and + (denoted by

®). The element = +oo satisfies @z =z ande®z =< (e @ v

acts as zero). The element= 0 satisfiese ® © = z (e is the 1 i@
identity). The main difference with respect to the conventional 1—7 \ '\_G
algebra is thatr ® x = z (idempotency). We denot®,;, = , >
(RU {400}, ®,®) this structureR,,;, is a special instance CN' 3:)

of dioid (semiring with idempotent addition). _(R /—0
This min-plus structure on scalars induces a dioid struc- f?Q

ture on square matrices with matrix produdt ® B, for QJ U

two compatible matrices with entries iR,,;,, defined by

(A® X),, = min; (A;; + Bj), where the unit matrix is Fig. 1. Precedence Graph df.

denoted E. We associate to a square matrima precedence

graphG(A) where the nodes correspond to the columns (or In order to use the results given in the Proposition 1 we have

the rows) of the matrixd and the arcs to the nonzero entriet0 compute the circuits of the graph. The elementary circuits

(the weight of the ar¢i, j) being the non zero entng;;). We are the loops, of weight, and the complete circuit weighting

define|p|,, the weight of a pathp in G(A) as the sum of the 1 — No. Using the eigenvalue formula (3), the eigenvalue of

weights of the arcs composing the path. The arc number 4fis:

the pathp is denoted|p|;. We will use the three fundamental )\ = min <V 1- NU) _ ©)

results resumed in the following Proposition (see [2]): " N

P ition 1: Let A N X N)-Rpin- iX, h S -
set Lc;pgrs;tlljcig ofg(e/tl) \?\?earfavg' ) matrix, andC the Considering that the minimal space needed by a car on the
. . ' o . _ road iso, the car densityl is No divided by the length of
i) If the weights of all the circuits are positive, the equatiothe road. taken equal to 1, therefafe— No. The average
z = A®z®b admits a unique solution = A*®bwhere g, g equal to the car density times the average speed, that

* N-—-1 _ N-—-1
. A* = EE,BA@' oA ¢ =EvAe: ; ©A . is f = ANo. Then, replacing in (6) we obtain the fundamental
i) If G(A) is strongly connected, the matrit admits a traffic law -

unique eigenvalué € Riy:

f=min{vd,o(1 —d)} .
N . _ ; _ e
Jz Ryt A®r =A@z With A = mua Tel () Therefore, using this min-plus model, we find again the
results presented in [3].

2This explains the 41" in (1) and (2).
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V. THE FUNDAMENTAL TRAFFIC LAW IN THE Defining: X* = [a1,... ,xf,v]/ ,
DETERMINISTIC ANTICIPATIVE CASE S .
Using min-plus notation, the dynamics of the traffic in the - i ot
anticipative case may be written A= ‘ ' , B'=B(v") = 2 ,
t+1 t+1 t e .
XM =A X" eB X", @) 1 - e
where where the missing entries arg we can rewrite the equations
€ —0 v more compactly as
. e 5o Xl A X" e B o Xt . (11)
e 7 In our caseA* is easy to compute
1—-0o € v e e - e
This is an implicit system, to obtain an explicit system we i} 1
have to computel* (see Proposition 1-i or [2]). The existence A" = . ]
of A* is verified if and only if there is no circuit with negative R
weight in G(A), that is, if 1 — No > 0, which is true by L1 e
assumption. This condition means that there is enough plageen,
on the road for theV cars. The explicit form of the equation Xl =t g Xt (12)
is :
Xt+1 — A* ® B ® Xt. (8) W|th Ct = A* ® Bt.

Using the fact that the matrice€® are all irreducible
The mean speed of the cars is fRg;, eigenvalue ofA* @ B (because there are no zero entrie€'fi) we know by Corollary
which can be easily verified to be equalitptherefore in this 7.31 of [2] that :
case, the fundamental traffic law is given fy= vd. This is

an involved application of Theorem 3.28 in [2], nevertheless

the result can be guessed without any computation. Inde@heres is called the Lyapunov exponent of the stochastic min-
in this deterministic anticipative case, all the cars can moygus matrixC (with (C?);cn, independent samples af).

with speedv, (at the initial time the cars respect the security In general, there is not a known method to compute ex-
distance and they can move all together at speeespecting plicitly the Lyapunov exponent. Explicit formulee involving

lign;vfl/t =9, Vn,

the safety distance). computation of expectations are given in [10], but there is no
way to compute explicitly these expectations. Nevertheless,
VI. STOCHASTIC MODELLING here we are able to characterize the stationary regimg ‘of

. . . This allows us to compute explicitly the expectation appearin
Now we suppose that at each unitary time stegach driver in P plcity P PP g

n chooses his desired speefl independently and randomly
between{n, v} with probabilities{u, A}, n < v. That is, the
random variablegv!}, with n = 1,--- | N andt¢ € N, are .
i.i.d. Bernoulli random variables. We suppose théa)n — 0, . In order to represenF graphically the system state we use the
(b) that the safety distance is O (this means that two cars mcgg.grams shown on F'gtfres 2and 3 vyhere :

be in the same position), (c) the drivers may anticipate the 1) €ach segment outside the outer ring has a length propor-

move of the car ahead. Then, the dynamics of the system is_ tional to the number of cars in that position;

VIl. JAM REGIME

given by : ii) the black (blue) [re_zsp. grey (green_)] length of segments
s . between the two rings are proportional to the number of

St { min (v}, + z, , =) o if n <N, cars with desired speeti[resp. v];
" min (vl +afy, 1+277) , ifn=N. In Figure 2 we show the evolution of the system for 100

. L . . ©) cars with speeds andv = 1/3.
This system is still linear in the min-plus algebra but now it

is stochastic. Within this algebra the formula (9) becomes

£ 1 i
mt+1:{v;®x%@xﬁbtl , if n<N, (10)

" vh e oledttt | ifn=N.

3The assumption (a) is justified by the standard change of variables
z = a2’ +nt’, ¥ = t. The assumption (b) allows us to obtain interesting
mathematical results . The more general case# 0) can be analogously Fig. 2. Evolution of the system with 100 cars and= 1/3.
modelled (see section X) and numerical experiments have shown that the
qualitative results are similar. The assumption (c) is more realistic and can . .
be analyzed mathematically but the non anticipative case is easier to analyzén Figure 3 we show the evolution of the system for 50 cars
and gives the same kind of fundamental car-traffic laws. with speed9) andv = 0.3.
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Thel — Th = V, Thea — The1 = 7Y, FEMAaining in a jam state.

A P -
Q The functiond(x) can be seen as a sort of distance to a jam
regime and it verifies the following property.
=0 =1 / Theorem 1:The sequenceé— §(X*) is non increasing.

=100 t=1000
The proof of the theorem is in Appendix 1.
Fig. 3. Evolution of the system with 50 cars and= 0.3. Theorem 2:A jam regime is almost always reached, i.e.,
with probability one.
Proof: In order to prove that a jam regime is reachable, we
Definition 1: We call statethe set of positions of the carsconstruct a finite sequence of independent events with positive
on the circle. We callam state a state where the cars argyrobability after which the system reaches a jam state. Then,
concentrated irk clusters, possibly empty, wheke= [ ] is this finite sequence will appear with probability one in an
the upper round of /v. The positions of the clusters are givennfinite sequence of events (Cantelli-Borel).
by {my,---me} with 7y —m = v fori=1,...,k—1.In  The dynamics of the system is given by the matikw) =
such a jam state the distance between two clusterseicept A+ B(y(w)), where B is the diagonal matrix of car desired-
for at most one pair where the distanceyis= 1 — (k — 1)v.  speeds chosen randomly and independently betvgeand
When1/v € N we say that the jam state fegular, and the et us consider the matriK; associated with the speed

distance between all the clustersiis (0---0,1,0---0) with v in position j. All the matrices
Definition 2: When for allt > T the system stays in a jaij,j =1-.--N have a Stricﬂy positive probabmty of occur-
state we say that aftéf the system is in gam regime rence.
Proposition 2: A jam state is characterized by(z) = 0, Consider the finite sequence of independent events associ-
where ated to the following matrix product, wheteis the number
of clusters,
k ~k k k
5(z) = h—IlmnN Z (201 — 25} | ; (13) CiC5.....Cr_oCr_y .
o j:;;é‘[N It is easy to understand why after these events, all the cars
are together in only one cluster. The last ¢af) stays at the
{z} =z —v FJ ) same position, the previous c@V — 1) tries to movek times
v v joining the carN and so on. At the end all the cars will be
For non jam states we havgz) > 0. Moreover together in only one cluster obtaining a jam state.

The particular jam state used in the proof, has only the
property of being easily characterized. Other jam states are
that is, after reaching a jam state the system remains in a jggachable with a higher probability.
regime.

S(XT)y=0=6X"=0,Vt>T,

Proof:. It i; easy to see thal(xz) = 0 for a jam statex. VIII. T HE STATIONARY CAR DISTRIBUTION
The question is then to show the converse. Let us suppose that ) _ o _
§(z) = 0 by definition of§ there is amh* such that Let us determine the stationary distribution of the population
of carsb = (b1, -, bx) in the k clusters.
Z {zj1—2;1 =0, Theorem 3:The stationary distribution o is uniform on
J#h the simplex :

we can suppose without loss of generality that= N, then

_ _ k
for everyj # N, x;41 — x; is a multiple of v. Defining Bys={b|b1=N, beN}

k=[%] , and considering that whereN is the total number of cars,is the number of clusters
N1 in the stationary regime antl is a k-column vector of 1.
1>ay —x = Z Ti41 — T, Proof: Let us consider the Markov chain where the states
= belong to By ;. havingCY ™"~ nodes. Let us show that for

each outgoing arc from a node there is an incoming arc with
the same transition probability (which shows that the transition
matrix is bistochastic).

Outgoing: let us consider the transition from the state

e staté’. This state can be written &= b—d+6d wheref
Fotes the circular shift of a vectar; d = (d1,- -+ ,dg) —

; _ (dg,d1, -+ ,dp—1) and d is the leaving cluster vector (this
which are separated by. As the cars try to move, it is easy means that there aré; cars that leave the clustgrto the

to_ see thgt if the clustek + 1 is not er_n_pty, all the CIUSterS_cIusterj + 1). The probability of that event is
will remain at the same relative position. If that cluster is
empty then only the relative positions of clustérsh + 1 and
h+ 2 will change frommy, .1 — 7, = 7, Thao — Thy1 = v tO

we have that there are at mdst 1 non zero termgy, ...jx 1
which define thek —1 cluster in positiont; = z;,,...,m,—1 =
zj,_, and the last clustek is in positionzy. Therefore, the
system is in a jam state. t
Suppose the system has reached a jam state. Then, aIIGt
clusters are separated byexcept for the clusterd andh + 1

0 ifs=0,

> dj >0 ¢(bj—dj) —
A # where ¢(s) {1 otherwise.
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b4_;14+d1 J by Developing (16) we obtain
------- d / L
4 . soE e Ay k
i 5 ‘ 1 _\ — _ v _ bs
.“‘bj—d3+d4 ':obl—d]+d2 j b, ¢ b, ’ V=25 ; =% N (k ;/\ )
IRLY Tiog d RRNY Tie and by linearity
b2—d2+d3 bz \ v
b by=d,+d oA(N, k) =E(V) = == (k- Sp(N 17
o a d o oA(N, k) =E(V) N (k = Sk(N)), an
. h s where we have denoted
¢ ,-.bl b3_d3+d2.-‘ b=d Hg;,-. k
d d — bs
S L i g Sk(N)=E (Z A ) : (18)
b, b-dsd, s=1
Using the fact that the probability distribution df is
Fig. 4. Equally probable transitions uniform, we have that
k k
S, (N)=E Ao | = T Abs | 19
Incoming: we consider now the state— d + 6~'d from b (V) (; > ; N’k; (19
which we can reach the statewith 6—1d as leaving cluster ’ )
vector. The probability of this event is where we have denotedy , = (CX""~')"". Interchanging
AZds 2 b0 —djtdipa—djs1) the summation order we obtain
N k
but ¢(b; —d; +dj+1 —dj1) = ¢(b; —d;) and thus it has the Se(N)=7ne D> > {N by =h}
same probability than the corresponding outgoing arc. h=0 s=1 By
To complete the proof, we have to show that the map that N k
associates to each output arc an input one, is bijective. For = TNk ZZC%:ZM*%\*L
that, since the map is injective, let us show that the number of h=0s—1
outgoing arcs from a particular stai@s equal to the number N
of incoming arcs to this state. The number of outgoing arcs =k TNk Z Chhrh=2)\h
from b is the number of elements of the sgt| 0 < d < b} h=0

where the order relation is considered componentwise. TRew, for N + 1, we have

incoming arcs to statkis given byd’ such that there exists a Nt1

stateb’ with o/ —d’' +60d’ = b and0 < d < ¥/, but this implies S (N N+1—h+k—2yh
that 0 < &’ < b. Therefore, the set of incoming arcs kds & ) N1k };} N+l1-h
defined by{d’ | 0 < d’ < b} which has the same cardinality

N
that the set of outgoing arcs from O — k](\lrv;;) kTN Z E%:Z+k72>\h+l
h=0
IX. MEAN SPEED COMPUTATION _ k(k—1) |, N+41
= N1k +7N+k )\Sk(N) .

The knowledge of the distribution of probability afallows

the explicit computation of the mean speed. We do that in tfREPacing the recursive formula 6 in (17) we obtain (14).
following theorem. To find the asymptotic result (15) we remark titg{ V') goes

Theorem 4:For the regular case the mean spegdN, k) to 0 when IV goes toco. L )
can be obtained recursively as As an example we obtain foN = 3 and k¥ = 3 that

9x(3,3) = v(6A +3X% + A\%)/10 , and for N = 4 andk = 4

AN+ 1Lk) = (L Noy(NR) - (14) U (4,4) = v(A* 4+ 403 + 1002 4 201)/35 .
where v, (1,k) = Av. Moreover for largeN we have the X. EXTENSIONS AND NUMERICAL RESULTS
asymptotic result The previous analysis of the stochastic model may be done
_ A also in the non anticipative case. It can be extended to the case
AN k) = Nu +o(l/N) . (15) where the cars have a non negligible sizeThe models are

Proof: Let us compute the mean speed. Consider a clustgiij| stochastic min-plus linear, for example in the latter case,

the first car in the cluster leaves with probabilXyincreasing e have -
the mean speed inv/N, then the second car leaves this i1 .
{vfI ot @ (—o)zlth if n <N,

cluster with probability A2 increasing the mean speed in Pt —
vl @ (1 —o)2i™ | ifn=N.

n

A?v/N and so on. Then, the mean speed willlbg’ ) where

bs y Using the formulee obtained, or a simulator using thexvl
V= Z Z N—1]. (16) PrLus SciLAB toolbox [14] we can plot the fundamental traffic
s=1 \j=1 law in the different cases.
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f Proof:
) AL < Al(ah).
Indeed, in this case we have :
Aé‘(v’ﬂt) ={zj1 — x5} + 2 —xhp

If car | movesv, the carsj + 1,---,1 — 1 move also
v and whatever is the desired speed ¢f we have
Al(z) = Al(a").

If car [ does not move, a$a + b} < {a} + b and carj is
Fig. 5. Flow as a function of the density in the stochastic anticipative case ~ unhampered, then :

for a continuation ofA\ whenv = o.
l t+1 t t t+1 t l t+1
A7) <{zj — 25} + i — T+ AjaET),
moreover, as car | does not move we have :

l t+1 t t+1
Ajp (@) <ap —ayy
t t t+1 t
=z — T4 — (250 — i)
and the result follows.
ii) Denotings an index reaching the minimum in the definition of
Al(z"), we have:

N 1 P 1 1 1
A () <A + Aja ()
it l ty _ AL/t
Fig. 6. Flow as a function of the density in the stochastic non anticipative < Aj(@7) + Aiga (27) = A5(27)
case for a continuation of whenv = 30. 0
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