
Second Order Theory of Min-Linear Systems and its Application to
Discrete Event Systems

Max Plus∗

Key words: Discrete event dynamic systems, timed
event graphs, second order theory, residuation theory.

Abstract

A Second Order Theory is developed for linear systems
over the (min,+)-algebra; in particular the classical no-
tion of correlation is extended to this algebraic struc-
ture. It turns out that if we model timed event graphs
as linear systems in this algebra, this new notion of cor-
relation can be used to study stocks and sojourn times,
and thus to characterize internal stability (boundedness
of stocks and sojourn times). This theory relies heavily
on the algebraic notion of residuation which is briefly
presented.

1 Introduction

In [4, 6, 5], a linear system theory analogous to the
conventional theory has been developed for a particu-
lar class of Discrete Event Dynamic Systems (DEDS)
called Timed Event Graphs (TEG). This theory extends
the notions of state space, impulse response and trans-
fer function to TEG’s. The periodic behavior of these
systems has been characterized and a spectral theory
has been developed. The key feature which allows ex-
tending all these classical concepts is a general notion,
called (min,+)-linearity. A system is (min,+)-linear if
the min of the inputs produces the min of the corre-
sponding outputs, and if, when a constant is added to
all the inputs, then the same constant is added to all
the outputs. TEG’s are particular discrete (min,+)-
linear systems, but the theory is also suited for contin-
uous time systems [10]. In this general framework, the
input-output relation of time-invariant systems can be
expressed as an inf-convolution of the inputs with the
impulse response, and the theory looks very similar to
the conventional one. However, all these results belong
to the “first order linear theory”, i.e. the quantities
which are considered are linear functions of the inputs.
This is not the case for other interesting quantities such
as stocks and sojourn times. The stock in a place de-
pends on the difference between inputs and outputs of
this place. Similarly, the sojourn time is the difference
between input and output times. It should be realized
that, in the (min,+)-algebra, such differences are non-
linear functions. However we will show that stocks and
sojourn times are particular cases of quasi-bilinear quan-
tities called “correlations” by analogy with the second
order theory of stochastic processes. The study of cor-
relations forms a “second order” theory which will ap-
pear to be the adequate tool for dealing with stability
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issues of DEDS. In §2, we summarize the first order
(min,+)-linear theory. In §3, we introduce a few ele-
ments of residuation theory needed to deal with corre-
lations. Then, in §4, the second order theory is applied
to TEG’s.

2 First Order Theory of (min,+) Linear
Systems

In this section, we briefly recall how TEG’s can be mod-
eled by linear equations over some particular dioids. A
more detailed account can be found in [6, 10].

2.1 (min,+) Equations

We consider the TEG of Figure 1. For each transition
of the graph, say for the one labeled X1, x1(t) denotes
the number of firings up to time t (counter function).
The initial marking (tokens represented by dots) and

X1 X2

U

Y1 Y2

Figure 1: A simple timed event graph

the holding times in the places in time units (number of
bars) are given in Figure 1. Then the following inequal-
ities are obtained:

x1(t) ≤ min(1 + x1(t− 1), 2 + x2(t− 1), u(t)) ,
x2(t) ≤ min(3 + x1(t), 3 + x2(t− 3), 2 + u(t)) ,
y1(t) ≤ x1(t) , y2(t) ≤ x2(t) .

(1)

Since we are interested in transition firings occurring at
the earliest possible time, the maximal solution (which
achieves equalities in (1)) is the one of interest. We shall
give several linear representations of this system.

2.2 Linear Recurrent Representation in Rmin

Let Rmin denote the set R∪{±∞} endowed with min as
addition, denoted⊕, and + as multiplication, denoted⊗
(e.g. 2⊗3⊕7 stands for min(2+3, 7) = 5 with the usual



priority rules). We conventionally set (−∞)⊗ (+∞) =
+∞. The sign ⊗ will be omitted as usual when this
causes no risk of confusion. This algebraic structure
is a particular example of a dioid [6], i.e. there exists
a zero element ε = +∞, a unit element e = 0, ⊕ is
idempotent (a ⊕ a = a), the usual combinatorial rules
(associativity, distributivity) hold, and the zero element
ε is absorbing for multiplication (x⊗ ε = ε). With this
notation, System (1) can be rewritten as

x1(t) ≤ 1x1(t− 1)⊕ 2x2(t− 1)⊕ u(t) ,
x2(t) ≤ 3x1(t)⊕ 3x2(t− 3)⊕ 2u(t) ,
y1(t) ≤ x1(t) , y2(t) ≤ x2(t) ,

(2)

in which linearity becomes more apparent.

Remark 2.1 Another important dioid is Rmax, the
dual dioid of Rmin (min is replaced by max, and the
convention (−∞) ⊗ (+∞) = −∞ is adopted). In this
dioid, Rmax-linear dater equations can be written [6].

2.3 Representation in the Dioid Max
in [[γ, δ]]

Let us introduce the shift in counting, γ, and the shift
in dating, δ, defined respectively by:

[γ(x)](t) = 1 + x(t), [δ(x)](t) = x(t− 1) .

The operators γ and δ commute and are Rmin-linear.
The powers of γ and δ obey the following important
absorption rules [6]:

(i) γν ⊕ γν ′ = γmin(ν,ν ′) ,

(ii) δτ ⊕ δτ ′ = δmax(τ,τ ′) .
(3)

The set of operators in TEG’s can be represented by
the dioid of formal series with two commuting vari-
ables, γ and δ, integer exponents and boolean coeffi-
cients, together with the simplification rules (3). For
reasons which will become clear later, we allow nega-
tive exponents as well. The construction of this dioid
is done more explicitly in [6]. Because of the simplifi-
cation rules, this dioid is called Max

in [[γ, δ]] (pronounced
“min max γ δ”). The unit element will again be denoted
e, and the zero, ε. System (2) can now be expressed as
follows:

x ≤
(
γδ γ2δ
γ3 γ3δ3

)
x⊕

(
e
γ2

)
u = Ax⊕Bu ,

y ≤
(
e
e

)
x = Cx .

(4)

Introducing the rational operation ∗: A∗ =
⊕+∞

i=0 A
i, one

easily checks that the maximal solution of (4) is given
by

y = CA∗Bu
def
= Hu . (5)

H is called the transfer matrix of System (4). Let E
be the identity matrix. The matrix A∗, which is the
least solution of X = AX ⊕ E (after the order defined
in §3.1), can be computed using Gaussian elimination
[1, 9, 6], provided that the ∗ of scalars can be computed.
For instance, after some computations using the simpli-
fication rules (3), we obtain:

A∗ =
(

(γδ)∗ γ2δ (γδ)∗

γ3 (γδ)∗
(
γ3δ3

)∗ )
,

H = A∗B =
(

(γδ)∗

γ2
(
e⊕ γ2δ

) (
γ3δ3

)∗ ) . (6)

In order to interpret the transfer matrix H, we recall
that the counter function canonically associated with a
series s is the unique nondecreasing function Cs : Z→ Z
such that s =

⊕
t∈Z γ

Cs(t)δt (with the convention γ+∞ =
ε, γ−∞ = (γ−1)∗). Similarly, the dater function Ds is
the unique nondecreasing function Z → Z such that
s =

⊕
n∈Z γ

nδDs(n) (with δ+∞ = δ∗, δ−∞ = ε). Since
one possible representation1 of e is

⊕
t≥0 γ

tδ0, the dater
function associated with e is

De(t) =
{−∞ if t < 0 ;

0 otherwise.
(7)

This essentially means that an infinite number of tokens
(numbered 0, 1, . . .) have been placed at the input at
time 0; therefore, e plays the role of the impulse and
He = H is the impulse response of the system. For
instance, since the first entry of the transfer matrix is
equal to H1 = (γδ)∗ = e ⊕ γδ ⊕ γ2δ2 ⊕ · · ·, we obtain
DH1 (0) = 0,DH1 (1) = 1, . . . which means that after time
0, the transition X1 is fired once every time unit.

2.4 Representation by Inf-Convolutions

We introduce the dioid RRmin of functions R → R, en-
dowed with the pointwise min as addition and the inf-
convolution as multiplication, i.e.

(u⊗ v)(t) =
⊕
τ∈R

u(t− τ)v(τ)

(the product in the right-hand side denotes the product
in Rmin, and the notation

⊕
for inf is extended to infinite

families, see §3). For instance, y1 = H1(u) rewrites

y1(t) = [(γδ)∗(u)](t)
= inf{u(t), 1 + u(t− 1), 2 + u(t− 2), . . .}

which is nothing but the inf-convolution of u with

h(t) =
{
t if t ∈ N ;
ε otherwise.

More generally, it is shown in [10] that a general SISO
time-invariant Rmin-linear system S can be represented
by the input-output relation

[S(u)](t) =
⊕
τ∈R

h(t− τ)⊗ u(τ) . (8)

We go from representation (5) to representation (8) us-
ing the map s 7→ Cs defined in §2.3. More specifically,
we extend Cs to noninteger values by taking Cs constant
on intervals [n, n + 1), with n ∈ Z. Then, C becomes
a dioid morphism from Max

in [[γ, δ]] to RRmin, which maps
(5) to (8). The representation (8) obviously extends to
the MIMO case: h becomes a matrix with entries in
RRmin. Dual sup-convolution representations can also be
written for dater functions.

1Due to the simplification rules, there are several formal equivalent
representations of the same element in M

ax
in [[γ, δ]]—see [6] for details.



3 Algebraic Theory of Correlations

3.1 Residuation in Complete Dioids

Residuation is a general notion in lattice theory which
allows defining “pseudo-inverses” of some isotone maps.
Here, we are basically concerned with solving equations
of the type ax = b, i.e. in “inverting”, in a sense to be
defined later, the map x 7→ ax. Therefore, we shall recall
here the basic facts about residuation of multiplicative
maps in complete dioids, and refer the interested reader
to [3] for an extensive account of residuation theory.

Natural order relation in dioids In any dioid D,
the natural order relation is defined as follows:

a ¹ b⇔ a⊕ b = b . (9)

The least upper bound of a and b, a∨b, is equal to a⊕b.
Because ε ⊕ b = b, ε is the least element in D. We say
that the dioid D is complete if

(i) all (possibly infinite) families {xi}i∈I in D admit
a least upper bound, denoted for obvious reasons⊕

i∈I xi, and

(ii) the product is distributive with respect to the least
upper bound, that is:

a

(⊕
i∈I

xi

)
=
⊕
i∈I

axi,

(⊕
i∈I

xi

)
a =

⊕
i∈I

xia .

(10)

In complete dioids, the greatest lower bound ∧ always
exists and is characterized by:

a ∧ b =
⊕
x≤a
x≤b

x .

Generalized quotients in complete dioids

Definition 3.1 In a complete dioid, the left and right
quotients of a and b are defined respectively by:

a◦\b = max {x | ax ≤ b} ,
a◦/b = max {x | xb ≤ a} (11)

(max emphasizes that the least upper bound itself be-
longs to the subset).

Indeed, since ε is absorbing, the set {x | ax ≤ b} is
nonempty and it is stable under ⊕ because of (10), thus
left and right quotients are well defined. In other words,
we have weakened the notion of solution of ax = b to
that of subsolution and called left quotient the maximal
subsolution. The basic properties of quotients are:

x 7→ a◦\x is isotone, (12)
x 7→ x◦\b is antitone (13)

(f is isotone, resp. antitone, if a ¹ b ⇒ f(a) ¹ f(b),
resp. f(a) º f(b)),

b invertible⇒ b◦\a = b−1a , (14)
a◦\a º e , (15)

(ab)◦\c = b◦\(a◦\c) , (16)
c◦\(ab) º (c◦\a)b , (17)
b invertible⇒ c◦\(ab) = (c◦\a)b , (18)
(a⊕ b)◦\c = (a◦\c) ∧ (b◦\c) , (19)
c◦\(a ∧ b) = (c◦\a) ∧ (c◦\b) . (20)

Of course, all the properties already mentioned for left
quotients admit dual formulations for right quotients.
For instance, (16) becomes:

c◦/(ab) = (c◦/b)◦/a .

Matrix residuation Next we generalize Defini-
tion 3.1 to matrices with entries in a complete dioid.
The greatest matrix X ∈ Dp×k such that AX ≤ B with
A ∈ Dn×p and B ∈ Dn×k will again be denoted A◦\B (a
similar definition is adopted for right matrix quotient).
Simple formulae relate matrix quotients to scalar quo-
tients [2]:

(A◦\B)ij =
n∧
l=1

Ali◦\Blj , (21)

(A◦/B)ij =
k∧
l=1

Ail◦/Bjl . (22)

Let us define the dual trace of a square matrix A
by Tr∧(A) =

∧
i Aii. For all n-dimensional vectors

u, v, we obtain the counterpart of the classical identity
Tr(uvT ) = vTu:

Tr∧(u◦/v) = v◦\u (23)

(v◦\u is a scalar, and u◦/v is an n × n matrix). It is
worth noting that in general a◦\b and a◦/b have the same
dimensions as aT b and abT respectively (see formulae
(21), (22)). Let us we give a few examples of quotients
in familiar dioids.

Residuation of product in Rmin We immediately
check that:

a◦\b = b− a if a and b are finite,
a◦\(−∞) = (−∞) for all a,

a◦\ε = ε for all a finite,
ε◦\a = (−∞) for all a,
(−∞)◦\a = ε if a 6= (−∞).

It should be noticed that ε ⊗ (−∞) = +∞−∞ = ε =
+∞ whereas ε◦/ε = +∞−∞ = −∞, which shows that
the notation a − b is ambiguous for infinite values of a
and b.

Residuation of product in Rmax The only changes
by comparison with Rmin are

a◦\(+∞) = (+∞) for all a,
ε◦\a = (+∞) for all a,
(+∞)◦\a = ε if a 6= (+∞).



Residuation of inf-convolution product There is
an important formula which relates the scalar quotient
in Rmin with the quotient in RRmin, namely:

(u◦\y)(t) =
∧
τ∈R

[u(τ − t)◦\y(τ)] , (24)

where the former quotient ◦\ denotes the residuation of
the inf-convolution product and the latter denotes the
residuation in Rmin already introduced. In a perhaps
more suggestive way, we can write for finite u and y:

(u◦\y)(t) = sup
τ∈R

[y(τ)− u(τ − t)] . (25)

3.2 Correlations

Definition 3.2 Let u, v be two vectors with respective
dimensions n and p. The matrix u◦/v is called the cor-
relation matrix of u over v. If u = v, it is called the
autocorrelation matrix of u.

The relation with standard correlations will be discussed
in §4.1. Here we just establish the algebraic properties of
these quantities. In particular, we investigate how cor-
relations evolve through linear systems. The following
result is noticeable.

Theorem 3.3 (Increasing Correlation Principle)
Let y = Hu and z = Hv be the outputs corresponding
to inputs u and v. Then

y◦/z º (v◦\u)(H◦/H) , (26)
y◦\z º (u◦\v)Tr∧(H◦/H) . (27)

Proof We have

y◦/z = (Hu)◦/(Hv)
= [(Hu)◦/v]◦/H (by (16))
º [H(u◦/v)]◦/H (by (17))
º [HTr∧(u◦/v)E]◦/H
º [H(v◦\u)E]◦/H (by (23))
º [(v◦\u)H]◦/H (v◦\u is scalar)
º (v◦\u)(H◦/H) (using (17) again).

Formula (27) is obtained by similar calculations.
Since H◦/H º E, (27) implies that

y◦\z º u◦\v , (28)

which means that in the scalar case, the correlation of
output signals is never less than the correlation of in-
puts. In the case of autocorrelations, (26) becomes:

y◦/y º (u◦\u)(H◦/H) . (29)

Because (u◦\u) º e, (29) yields a second correlation prin-
ciple, which states that the autocorrelation of the output
is at least equal to the intrinsic correlation H◦/H of the
system.

Theorem 3.3 suggests the importance of quotients of
the form A◦/A. We give a simple algebraic character-
ization of these quotients when A is a square matrix
without proof.

Proposition 3.4 The following statements are equiva-
lent:

(i) there exists a matrix B such that A = B◦/B;

(ii) there exists a matrix B such that A = B∗;

(iii) A = A◦/A;

(iv) A = A∗;

(v) A2 = A and A º E (x 7→ Ax is a closure mapping
[3]).

3.3 Rationality and Residuation

We now consider the problem of effectively computing
quotients, particularly for power series in Max

in [[γ, δ]]. Of
course, the power series which arise in the study of
TEG’s are not arbitrary, but they are rational (i.e. they
are obtained by a finite combination of sums, products,
and ∗ of polynomials). From formulae (19) and (20), we
note that quotients and ∧ operations are closely related.
For this reason, we first study the ∧ of rational series.

Theorem 3.5 The ∧ of two rational series in Max
in [[γ, δ]]

is also rational.

Sketch of proof This result can be derived from a
theorem of Eilenberg and Schützenberzer ([8], Theo-
rem III), which states that the intersection of rational
sets in a commutative monoid is rational. In our case,
a simpler (but less general) argument exists for causal
rational series. In [6], it is shown that rational causal
series can be written as

s = P ⊕ γnδtQ(γνδτ )∗ (30)

where P and Q are causal polynomials such that
degP ≤ (n−1, t−1) and degQ ≤ (ν−1, τ −1). There-
fore, it is sufficient to show that the ∧ of series of type
(30) is again of the form (30). This essentially results
from the distributivity of ∧ with respect to ⊕, and the
fact that

γnδt(γνδτ )∗ ∧ γnδt(γνδτ )∗ = P̃ ⊕ γñδt̃Q̃(γν̃δτ̃ )∗

where τ̃ /ν̃ = min (τ/ν, τ/ν).

Theorem 3.6 The quotient of two rational series in
Max

in [[γ, δ]] is also rational.

Instead of proving this theorem in the general case, we
will concretely compute quotients of some rational series
in Example 4.7 and show that they are rational.

4 Second Order Theory

4.1 Correlations and Stocks

We now consider the problem of computing the stocks
in timed event graphs. Let u, v be two counter functions
associated with two transitions immediately before and
after a place p and let Su,v(t) denote the stock of tokens
in place p at time t. We have the fundamental relation:

Suv(t) = Suv(0) + u(t)− v(t) . (31)

Introducing the variation of stock after time 0:

Suv(t) = Suv(t)− Suv(0) , (32)



(31) can be written as Suv(t) = u(t) − v(t). More gen-
erally, for two transitions u and v connected by a path,
Suv(t) represents the variation of the total number of
tokens from time 0 to time t of all the places along the
path. If there are several parallel paths from u to v, this
variation is clearly the same for all these paths.

Definition 4.1 (Stock matrix) Let u, resp. v, be an
n-dimensional, resp. p-dimensional vector the entries of
which are counter functions. The stock matrix Suv(t) at
time t from u to v is defined by Suv(t) = u(t)◦/v(t).

When ui(t) and vj(t) are finite, we have:

(Suv(t))ij = ui(t)− vj(t) , (33)

so that Suv generalizes the definition of stocks to infi-
nite values. Another interesting quantity is S+

uv(t) =
u(t) − v(t−). S+ is different from S when v is not left-
continuous at time t.

Given two vectors of dater functions u and v, we du-
ally define the sojourn time matrix Tuv(n) for the event
numbered n by:

Tuv(n) = v(n)◦/u(n) (34)

(for dater functions, the quotient is of course that of
Rmax). The inversion of u and v between (33) and (34) is
necessary in order to obtain a nonnegative sojourn time
for the place or the path between the input transition
ui and the output transition vj . The main result of this
section is an immediate consequence of (24).

Theorem 4.2 (Stock evaluation formula) Let u, v
be vectors the entries of which are counter functions.
For all t ∈ R, we have

Suv(t) ≤ (u◦/v)(0) . (35)

Moreover, (u◦/v)(0) is the tightest constant bound. Also
S+
uv(t) ≤ (u◦/v)(0+).

Since Suv(t) = −Svu(t) for all finite u(t) and v(t), (35)
may also serve to get a lower bound for Suv. This for-
mula admits a counterpart in Max

in [[γ, δ]]. Let u, v be
two vectors with entries in Max

in [[γ, δ]] and Cu, Cv be the
associated counter function vectors. We have:

SCuCv (t) ≤ [C(u◦/v)](0), (36)

where ◦/ denotes the quotient in Max
in [[γ, δ]]. Sojourn times

can also be bounded by way of the inequality:

[D(v◦/u)T ](0) ≤ TDuDv
(n) . (37)

We let the reader find the dual of (35) for sojourn times
using the quotient associated with sup-convolution of
daters.

Remark 4.3 In writing the stock evaluation formula,
we have used the usual order relation ≤ which is just
the opposite of ¹ in the dioid Rmin. In the following,
we will always use ≤ when the concrete meaning of the
results is concerned. It is important to note that u and
v are strongly correlated (in the practical sense that the
backlog between u and v remains small) when (u◦/v)(0)
is large with respect to ¹.

Remark 4.4 When x = u = v, the autocorrelation
simply measures the maximal variation of x in a window
of width t:

(x◦/x)(t) =
∧
τ∈R

[x(τ)◦/x(τ − t)] , (38)

i.e. supτ [x(τ)− x(τ − t)] for finite x. Formula (23) with
u = v = x gives the autocorrelation of a vector of time
functions. We have:

x◦\x = Tr∧(x◦/x) =
∧
i

xi◦/xi , (39)

i.e. x◦\x is equal to the min of the autocorrelations of all
the entries of x. Therefore, the “scalar product” x◦\x can
be interpreted as a measure of the time-space dispersion
of x.

Remark 4.5 With Formula (24), the analogy with the
conventional correlation limT→∞

1
2T

∫ T
−T u(τ − t)y(τ) dτ

should be clear.

4.2 Some Applications

The properties of correlations can be used to alge-
braically derive a well known property of Event Graphs.

Proposition 4.6 The number of tokens in any circuit
of a timed event graph is constant.

Proof The variation of the number of tokens in a
circuit is equal to the storage variation Sxx from any
transition x of the circuit to itself. Then, the stock
evaluation formula can be rewritten (for a finite x(t))
as −(x◦/x)(0) ≤ Sxx(t) ≤ (x◦/x)(0). But x◦/x º e im-
plies that (x◦/x)(0) ≤ e(0) = 0, and therefore 0 ≤
Sxx(t) ≤ 0. This shows that the number of tokens re-
mains constant.

Example 4.7 For the event graph of Figure 1, apply-
ing Proposition 3.4 and with (6), we get: (H◦/H)11 =
(γδ)∗ ◦/ (γδ)∗ = (γδ)∗. For (H◦/H)12, (20) yields:

(γδ)∗◦/(γ2(e⊕ γ2δ)(γ3δ3)∗) =
γ−2(γδ)∗◦/(γ3δ3)∗ ∧ γ−4δ−1(γδ)∗◦/(γ3δ3)∗ . (40)

But from the monotonicity properties (12) and (13),
we get (γδ)∗ º (γδ)∗◦/(γ3δ3)∗ º (γδ)∗◦/(γδ)∗ = (γδ)∗.
Moreover, γ−4δ−1(γδ)∗ º γ−4δ−1γδ(γδ)∗ = γ−3(γδ)∗ º
γ−2(γδ)∗, which shows that the second term in the right-
hand side (40) is greater than the first term. Thus,
H12 = γ−2 (γδ)∗. The other correlations can be com-
puted in a similar way. We obtain:

(H◦/H)21 = γ2δ−1 (γδ)∗ ,

(H◦/H)22 =
(
e⊕ γ2δ

) (
γ3δ3)∗ ,

which in terms of counting functions yields:

−C(γδ)∗(0) = 0 ≤ SX1X1 ≤ 0 = C(γδ)∗(0) ,
−C(H◦/H)21 (0) = −3 ≤ SX1X2 ≤ −2 = C(H◦/H)12 (0) ,
−C(H◦/H)22 (0) = 0 ≤ SX2X2 ≤ 0 = C(H◦/H)22 (0) .

From the bounds on SX1X1 and SX2X2 , we check again
that the number of tokens in a circuit is constant. In
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Figure 2, we have drawn the counter functions associ-
ated with H1 (black points) and H2 (white points). The
difference between the two functions at a given time
gives the stock. It takes the values −2 and −3, which is
consistent with the bounds given here above. More triv-
ial bounds can also be directly derived: the variation of
stock in place X1 → X2 is greater than −3 (otherwise,
the number of tokens in this place would be negative).
Moreover, it cannot exceed 2 (because the number of to-
kens in a circuit is constant, the number of tokens in the
other place of the circuit, viz. X2 → X1, would be nega-
tive). Thus, we only have a priori that −3 ≤ SX1X2 ≤ 2
(and it is not obvious that these bounds are tight).

Figure 2: Counter functions and stocks

4.3 Stability

Definition 4.8 (Internal stability) A timed event
graph is internally stable if for all inputs, the internal
stocks remain bounded.

Given a representation in RRmin of S defined by x =
Ax⊕Bu, the internal stocks are described by the matrix
Sxx(t) = x(t)◦/x(t) (cf. (33)). By the stock evaluation
formula, we see that S is stable iff for all input u, we
have:

∀i, j, (x◦/x)(0)ij < +∞ . (41)

We have the following characterization, for which we
skip the proof.

Theorem 4.9 (Condition of Internal Stability)
S is stable iff [(A∗B)◦/(A∗B)](0) < +∞.

Stability has something to do with the “structure” of
matrices A,B,C. Recall that a graph G can be associ-
ated with A (n×n), B (n×p), C (q×n) in the following
way: G is made up of n nodes labeled xi, p nodes uk, q
nodes yj , there is an arc from xi to xl if Ali 6= ε, there
is an arc from uk to xi if Bik 6= ε, an arc from xi to yj
if Cj,i 6= ε. S is structurally controllable if for all nodes
xi of G, there is a path from some uk to xi. It is struc-
turally observable if for all xi, there is a path of xi to
some yj .

Proposition 4.10 (Feedback stabilization) A
structurally controllable and observable causal system
can be stabilized by feedback.

Sketch of proof We have to find a matrix K such
that S′ : x = A′x⊕ Bu; y = Cx with A′ = A ⊕ BKC
is stable. From the increasing correlation principle, we

get x◦/x º [(Bu)◦\(Bu)][(A′)∗◦/(A′)∗] º (A′)∗◦/(A′)∗ (this
is simply Formula (29) in which Bu replaces u). Hence,
with Proposition 3.4, we have x◦/x º (A′)∗, so that it is
sufficient to find K such that all the entries of (A′)∗(0)
be finite. A sufficient condition is that the graph associ-
ated with A′ be strongly connected and that each circuit
contain at least one token. This is possible thanks to the
connectivity assumption.

Example 4.11 The TEG represented in Figure 3 is
not stable. For instance, if tokens arrive in U1 at the rate
of 2 tokens per unit of time, then tokens accumulate
without bound in the place from X1 to X2 since the
throughput of X2 is limited to one token per unit of
time. However, the system is structurally controllable
and observable and it can be stabilized by the feedback
K shown in Figure 3.

X1 X2

U1 U2

Y

feedback in grey

Figure 3: An unstable timed event graph with a stabi-
lizing feedback
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