Derivation of the fundamental traffic diagram for two circular roads
and a crossing using minplus algebra and Petri net modeling.
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Abstract—The fundamental diagram gives the relation be- We show experimentally that the corresponding fluid Petri
tween the flow and the _den_sity of vehicles for the car _traﬁic net presents the same properties and has the same asymptotic
on a road. We extend this diagram to the case of two circular diagram. We recover, on the computed fundamental diagram
roads with an intersection. From a Petri net model we derive ’ ) . '
the dynamics in terms of the composition of a standard linear the presenlce of seV(_eraI traffic phases knov_vn in the cellular
operator and a minplus operator which determines uniquely the ~automata literature (in the case of stochastic models).
system trajectory. We show, experimentally, that there exists an ~ The influence of a traffic light control on this diagram is
average flow which becomes asymptotically independent of the also given. It shows the potential gain obtained by setting

initial position of the vehicles when the size of the system goes y5ffic lights with or without feedback on the states of the
to infinity. We study the corresponding fundamental diagram roads

and analyze the different phases that can appear.
Il. MINPLUS ALGEBRA

In this section we present the main definitions and prop-
The fundamental diagram gives the relation between th&ties of the minplus algebra. The reader is referred to [1]
flow and the vehicle density for the car traffic on a road. ltor an in-depth treatment of the subject.
has been observed empirically and derived theoretically in The structureR,,;, = (RU {+oc0},®,®) is defined by
the case of a unique road or a regular system of roads sg@ sefRU{+oo} endowed with the operationsin (denoted
for example [5], [15], [2], [17], [16] and the surveys [7], [4]. by @, called minplussun) and + (denoted by®, called
We study here the fundamental diagram for a system of twinplusproduc). The element = +cc is thezeroelement,
circular roads without overtaking and a unique crossing. it satisfiess @z = x and isabsorbinge®z = ¢. The element
Microscopic traffic systems have been studied in statistical= 0 is theunity, it satisfiese ® 2 = . The main difference
physics as particular classes of cellular automata. In theith respect to the conventional algebra is the idempotency
cellular automaton classification [4], the model used hergf the additionz @ z = xz and the fact that addition cannot
is of Biham-Middleton-Levine [3] (BML) type (used to be simplified that is:a ® b = c® b % a = c. It is called
describe simplified regular towns). But contrary to BML, weminplus algebra
accept the possibility of turning like in [11], [12], [13] but, This minplus structure on scalars induces an idempo-
here, with deterministic turn (if we give a number to eachent semiring structure omn x m square matrices with
car entering in the crossing, the odd cars go south and titee element-wise minimum and matrix product defined by
even cars go to west) and making a special attention to thigl @ B),, = min; (A4;; + Bj;), where the zero and unit
case of only two roads and a crossing. This last case hastrices are still denoted by and e. We associate to a
been studied in detail in [8], [9], [10] without the possibility square matrixA, a precedence gragh(A) where the nodes
of turning with a stochastic modeling. We follow the pointcorrespond to the columns (or the rows) of the mattiand
of view discussed in [16] where the exclusion process ithe arcs to the nonzero entries (tweight of the arc(i, j)
given in terms of timed Petri nets using the minplus algebreeing the non zero entryl;;). We define|p|,, the weight
to write the corresponding dynamics. The model consideresf a pathp in G(A) as the minplus product of the weights
here is the simplest one with turning possibility. It is alsaf the arcs composing the path (that is the standard sum of
the simplest traffic model which is not an event graph.  weights). The arc number of the pathis denotedp|;. We
From a Petri net model we derive a well posed dynamiwill use the three fundamental results (see [1]).
obtained by composing a standard linear operator with a Theorem 1:Given A a m x m minplus matrix, if the
minplus operator. In the preliminary case of only a circulaweights of all the circuits ofj(A) are positive, the equation
road with a retarder, adapting [16], the fundamental diagrali = A ® X & B admits a unique solutionX = A* @ B
is obtained immediately from the graphic interpretation ofvhere
the eigenvalue of the minplus linear dynamics of the corre- i éA” _ 7591 An
sponding event graph. In the complete case of the two roads - - ‘

. . . n=0 n=0
and a crossing, we show, experimentally, that there existSTheorem 2:If the graphG(A) associated with the minplus

an average flow which becomes independent of the initighatrix A is strongly connected, the matrikadmits a unique
vehicle positions when the size of the system goes to infinitgjgenvalue) € R
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whereC is the set of circuits off(A). Proof: By definition of the firing instants, the Petri net is

Theorem 3:The minplus linear dynamic system associsuch that at each instant, at least, one place upstream of each
ated with the minplus matrix4, with strongly connected transition, is empty. The series representing the numbers of
graphg(A), defined by:X,, ;1 = A® X,, is asymptotically tokens in a place as function of time beirngt X (§)H (J) —
periodic X (6) (wherea is the vector of the initial markings) and each
minimum of the token numbers in the places upwards each
transition being) (by definition of firing) we have:

IIl. PETRINET DYNAMICS (XH(g)_XXtD)@)DZm

A Petri net\ is a graph with two set of nodes: the
transitions @ (with @ elements) and thplacesP (with P
elements) and two sorts of arcs, tegnchronization arcs

from a place to a transition) and tlpgoduction arcs(from . . .
( P ) Imeo & The nondeterministic Petri nets do not have a well defined

a transition {0 a place). dynamics but some constraints on the token dynamics are

A minplus P x @ matrix D, calledsynchronization matrix . y . dyne .
. X o : ' imposed by the nets. We can define dynamics invariants
is associated to the synchronization arcs. It is defined b

D,, — a, if there exists an arc from the plagec P to the atisfied by all the possible dynamics. Given a sequence of

- o . o
transitiong € Q and D,, — ¢ elsewhere, where, is the firings o, we denote byX? the line vector of the transition

- . . ; firing numbers and by? the line vector of the token numbers
initial marking and is represented graphically by the tokenlsn the places after this firing sequence. We have:
in the places. To count the tokens in the places we also use P 9 s€q ' '

IT, K\ :Vk > K : AT = 2T @ AF .

which gives the announced result, using the fact that, the
Petri net being deterministic, from each place leaves exactly
one arc.[]

a stand.ard matrix gssociated with QenotedXD (with the a’ =a+ X7 (H(1) = x5) .
same size a®) defined byxp,,, = 1 if D,, # ¢ and equal
to xp,, = 0 elsewhere. From this equation the following result is clear.

A standard algebré) x P matrix H (), calledproduction Theorem 5:For all column vectop satisfying
matrix is associated with the production arcs. fig entry .
is the delay operatof,,(§) = mg,d™ (wherem,, is the (H(1) =xp)p=0
multiplicity of the arc andr, the minimal sojourn time in
the placep (represented by sticks in the place) if there exists
an arc fromg to p and0 elsewhere. A delay operator acts o
series, itis defined by6™ : (X,)nen — M(Xn—7)(n—r)en-
By extensionH (1) is a matrix with real entriesn,,.

Therefore a Petri net is characterized by the quadruple

have
a’p =ap, Vo .
nThe numbersip are theright-invariants of the Petri net.

In the case okvent graphsparticular deterministic Petri
nets where all the multiplicityn,, are equal td and all the
places have exactly one arc upstream, the dynamics is linear
(P,Q,H(6),D) . in the minplus sense. It is:

It is a dynamic system in which the token evolution is par- X =X ® A(9),
tially defined by the transition firings saying that a transition ) ,

can fire as soon as all its upstream places contain at leddf A(0)es = a, @ 67 ‘/N'th p the unique place connected
a token having stayed a time larger than the place sojouf the transitions; andg’. _

time. When a transition fires, it generates a number of tokens” corollary (see [1]) of Theorem 2 is:

in each downstream place equal to the arc multiplicity of the 1heorem 6:For a strongly connected event graph the

arc joining the transition to the place. throug_hput defined by\ = lim,, X?/n is independent of
In the case of @eterministicPetri net, where all the places ¢ @nd is equal to:

have only one arc downstream, the dynamic is well defined, \ = min lela

that is, there is no token consuming conflict between the ceC el

downstream transitions. In the non deterministic case, WEhereC denotes the set of circuits of the event grafeh,

have to precise the rules which resolve the conflicts byye (ota] token number in the circuitand |c|, the total stick
for example, giving priorities to the consuming transitions,,mper in the circuit.

or by imposing ratios to be respected. As soon as this

rules are added, the initial nondeterministic Petri becomes IV. THE FUNDAMENTAL TRAFFIC DIAGRAM FOR A

a deterministic one. CIRCULAR ROAD WITH A RETARDER
Theorem 4:Denoting X = (X%),co the vector of se-

quencesX? = (X?),en such that the entrX ¢, is the firing

number of the transitiog up to timen, we havé:

It is easy to derive a quite realistic fundamental traffic
diagram from simple dynamical minplus linear models. For
pedagogical reason only the most simple diagram will be

X =(XH()®D. given here. To see more realistic one, in the simpler case
where there is not a retarder, see [16]. For another analytic
Lif f is a nonlinear functiolX = (X4)f means( X, 11 = f(Xn))nen.  result see Derida [5].



I‘-.'\ time, to go backwards freely; that means that: always p
cars can go forward. Then, the relation between the flow and
ﬂ n the density becomeg= (m —p)/m=1—-d.

: . ;}er@ \ l The third case is wher/(1 4+ 1/m) > 1/3 andd < 2/3
Oé@ Q&ijg gy then the retarder is fully busy that is all the three steps a car

@, 0@ leaves the retarder and the flowlig3.
® \Qj& These results can be observed numerically and will be
O - ® proved easily using event graph modeling in the next sub-
O, @O section.
o zf B. Event graph modeling

Q
@w@ @‘@(@ Using the notation of Section Ill, the dynamics of the event

O O graph associated with the traffic on a circular road with a
retarder and described by Figure 1 Part,lis defined by
Fig. 1. A circular road. the matrix:

e da; € . . € Qm
. . . ai € as € . . €
A. Exclusion process modeling for the road with a retarder A(6) =6 ) o ) ) .

Adapting [2] to the case of a road with a retarder, let us € : . € Gm-2 € 1
consider a circular road with places occupied or not by a car Gm € . € Q1 3

symbolized by a 1. Let us suppose that there is a retarder phere the initial car positions are given by the booleans
position 1 where we have to stay during at least two timghich are equal td when the cell is filled by a car arin
steps. The dynamics is defined by applying at each time Stqfe gther case and where we use also the notatienl — a.

simultaneously in all positions (at the exception of position The numbers of cars entered in sectioof the road before
1), the rule10 — 01. In position 1 and timen we can {ime n being denoted\?, we have:

apply the same rule only if there was a vehicle at time "
2. For the example given in Figure 1 Part I, we give, in  Xny = min{ag1 + X717 @, + X1}, Vg # 2,
Table I, three simulations of the system with three different XEZH = min{a; + X}L,D as + Xf;} ,

vehicle densities corresponding to the three phases (that wil

be discussed later) of the system. For such a system we c4here the operations on the indgxare done modulon.

A corollary of the Theorem 6 gives the fundamental

n [ 1/3<d/0A+1/m) | d/0+1/m)<1/3 | d=2/3 diagram.
d<2/3

1 1010100101 1000100100 0111011011 ¢

2 1001010011 1000010010 1110110110 13

3 0100101011 0100001001 1101101101

4 1010010110 1010000100 1011011011

5 1001001101 1001000010 0110110111

6 0100101011 0100100001 1101101110 ;
0

TABLE | 0 3 23 !

TRAFFIC SIMULATION FOR THE THREE POSSIBLE PHASES ) ] ] )
Fig. 2. Fundamental traffic law for one circular road with a retarder.

call densityd the number of carg divided by the number  Theorem 7:The fundamental diagram, giving the average

of placesm that isd = p/m. We call flow flow f as a function of the vehicle density for a circular
lim,,— o0 P, 1 road with a retarder is:
f=_0 M /ng— lim P, /n
m+1 P m 41 n—oo f(d) =min(d/(1+1/m),1—d,1/3),

where P, is the total number of car displacements until : . . .
instantn. The fundamental traffic diagram gives the reIatiorYVherem is the size of the road counted in vehicle places.
’ Proof: We see on Figure 1 Part lll that there are four

betweenf andd. types of circuits :
If p/(m+1) < 1/3, after a transient period of time all the yP h o ¢ .
cars are enough separated to go forward without interaction® the exterior of average We'QW(”?' +1),
« the interior circuit of average weiglfin — p)/m,

with the other cars. Thefi = p/(m+ 1) that can be written o ) X
« circuits, corresponding to going forward some steps and

as function of the density ag= d/(1+1/m) which is~ d ; ) X
as soon ad /m becomes small, that is when the size of the ~ 90Ing backward the same number of steps without using
the retarder, of average weight2,

system becomes large.

In the contrary, if the denS|ty 1S Iarger th@:ﬁ’?, all the 2|n this picture in all the places, at the exception of plage there is
free places are enough separated, after a finite amount @& stick not shown.



« Circuits, corresponding to going forward some steps and If X! denotes the number of firings of the transitign
going backward the same number of steps, of averagmtil time n, using the minplus notations, the dynamic of
using the retarder, with smallest average weight equithe system is defined, in the case where v/, by:

to 1/3. L )

Therefore we havg = min(p/(m + 1), (m — p)/m,1/3), X4/6 = a1 X0 @8 X1, (2)

which gives the result. m ge{2,....,v—1Lv+2,...2v—1}, (3)

X/ =a, X' X"/ X* ®a, XV, 4

V. TWO CIRCULAR ROADS WITH ONE INTERSECTION X2”/5 _ dzyXlXu-&-l/(Xu/é’) Gas 1 XL, (B)

We consider a system composed of two unique-direction X'/5 = a, {\/WJ @ a X?, (6)
circular roads with a unique intersection shown in Figure 3.

XY+§ = g, {\/XVXQVJ @ artixr? @)

where the minplus division /” is the standard subtraction,
taking the square root in minplus algebra means take the half
part, |.| denotes the rounding down operator, antthe back
time shifting operator acting on time sequences. For example

X1/ =a, WU(VX%J @ a X2

means in standard algebra

1 XV X2u
X, = min{au + {—FT‘;_”J , a1 +X721} .

Fig. 3. Two circular roads with a unique crossing.

We suppose that the cars cannot overtake and we model

their moving in the same way as in the previous section. This system of equations is implicit but triangular and
The cars Ieaving the intersection take the two dOWﬂStreafﬁerefore defines unique|y the trajectory of the system.
roads with the same proportion. We show the existence of Neglecting the rounding in (6) and (7), corresponds to fluid
a fundamental diagram for this new case and discuss itfetri nets where it is not necessary to have integer numbers of
properties showing the existence of several traffic phases.tokens in upstream places of a transition to start the fifings

] ) ) In this case the system can be written in matrix form using
A. Minplus Petri net modeling both standard algebra and minplus algebra.

We can define completely the system in terms of a
deterministic Petri net given in Figure 4 in the case of two
roads.WIth the Same SIZes. . ) with H(§) matrix 2v x 4v defined by:

As in the previous section, each road is cut upifresp.

V'] sections able to contain one car. To each sectios H(5) =6 F E,./2 P! E.,—FE,/6
associated the couple, and a, of the Petri net places. If T | Euw/2 F E,, —E,, p!

aq = 1 thena, = 0 and the section is occupied by a car. If
a, = 0 thena, = 1 and the section is free. The transition
q correspond to the input of the sectigh The crossing is
considered as a section with two inputs ant two outputs.

X=(XH()®D,

D = A® J with J a4v x 2v matrix par defined by:

1
€

™
~ o Ngo

and A = diag(a,a) a4v x 4v diagonal matrix where

« ¢ denotes the zero element of the minplus algebra that
is +o0,

« [ thev x v minplus identity matrix,

o P the v x v matrix associated with the permutation
2,--,1,1),

e E;; thev x v matrix having only one non null element
in positionij equal to the unit element,

e F=1;—FE,, /2 with I, the standard algebra identity
matrix.

Fig. 4. The complete Petri net for the intersection. 3As soon as there are real token numbers in each upstream places the
minimum of this number is consumed in each place.



B. The global fundamental diagram
The simulation can be easily done using the maxplus Q@ QQ
toolbox of Scilab [18]. In Figure 5, we show the relation

between the average density and the average flow in the case

of one crossing. Analyzing the results, it appears that theg. 7. Initial position and asymptotic periodic position of vehicles in the
maximal flow is equal to the half of the maximal flow of amiddle density case.

unique road case. Indeed the crossing has to serve two streets,

one West-East and one South-North with the same capacities.

The crossing is the bottleneck of the system and determines If the vehicles could go forward in this last road, some

its average speed. The maximum flow corresponds to the Vehicles would be able to leave it, but they cannot go
optimal level of congestion that is the saturation of the  forward because this road is full. For two roads with the

crossing. same size, this very abrupt blocking appears at density
1/2. At this density, everything works well but if a car is
added, this car slows down the average speed of the road
without priority. Then, there is a leak of the population
from the priority road to the other. The road without
priority fills up, becomes full and the last car in the
priority road wants to enter in the other one and the
system blocks.

: M . d
0 T T T T T T T T T
05 1 J
P o \
As ® ®
+

Fig. 5. Fundamental diagram for two circle-streets and a crossing with
priority to the right (the relative size of the roads varies from 1 to 10).

Fig. 8. Initial position and asymptotic blocked position of vehicles in the
high density case.

Moreover, we observe on these diagrams three phases:

« Thelow density phasghere a periodic regime appears )
with the average of the total population in each roadc: The fundamental diagram of each road
On each road the vehicles go freely not bothered by In Figure 9 we show the flow density relation for the road
the others. At each time step, when a car reachegithout priority. We see that its shape is very closed to the
the intersection, the intersection is free. The system isystem with a unique road and a retarder.
similar to an ideal gas where there is no interaction
between the molecules. ¢ f

0.25 0.25.

OO OO -

Without Priority

Fig. 6. Initial position and asymptotic periodic position of vehicles in the ] d | ‘ d
low density case. T Toas T T T

« The middle density phasevhere a periodic regime Fig. 9. Fundamental diagram for the two streets (without and with priority)
for the system with two circle-streets and a crossing.

appears with different populations on each road. The
size of the population on the road with priority stays
constant when we change the total number of vehicles The priority road has a fundamental diagram Figure 9
(staying in this phase); new vehicles will be absorbedompletely different which shows that its density does not
by the road without priority. The intersection reaches itgncrease when we add cars but stay in middle global density
maximal regime (one time step free one time step full)phase. On this diagram we see that the phase transition to
We can think to a system with a gas in the priority roadhe blocking phase is very abrupt with a car pumping from
and a melange of liquid and gas in the other road (lowehe priority road towards the other road.
temperature). If we add molecules they condense into , ) i .
liquid in the road without priority. D. Comparison of intersection policies

« Thehigh density phasthere is a blocked regime. There To avoid this blocking phenomena, light control can be
are still free places in the system, but a vehicle stiladded at the intersection. In future work, we intend to
wants enter in the road without priority which is full. optimize the light control by computing feedback on the



jam level of each road. For the time being we give théhe asymptotic is done on the size of the roads without

fundamental diagram for the three following policies: changing their respective size) does not depend of initial

« right priority, position of the vehicles. Moreover the fluid and the discrete

« half time red, half time green, Petri nets models have the same asymptotic diagram. This

« alternating the priority: during’ time steps right pri- result is clear experimentally, see Figure 11, but has to be
ority, then during theT' next time steps we use left proved mathematically.

priority (this case corresponds to a policeman making

the circulation). ] ] ] )
We compute the global fundamental diagram for this three '€ traffic model proposed here, using simple Petri nets
d minplus algebra, seems to contain the essence of the

cases and show them in the same Figure 10 (the two roaddd -
have the same size). traffic problem. From this model, we can compute the

The comparison of the three diagrams shows that the ligffndamental traffic diagram linking the average flow and the
control degrades a little the circulation in the low densitfar density. Even on the very simple system studied, here
case but improves a lot in the high density blocking cas&onsisting of two circular roads and an intersection, several
The third policy is the best and could be implemented by R"ases appear in the fundamental diagram.

simple feedback. In a real town a global feedback would be 10 define these fundamental diagrams, the existence of
much more complicated to obtain see [6]. an average flow independent of the initial vehicle position

is necessary. Future mathematical analysis will attempt to
f justify the existence of this average flow variable shown here
028 f experimentally and its independence with the initial vehicle
positions.

VI. CONCLUSION
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