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Abstract— The fundamental diagram gives the relation be-
tween the flow and the density of vehicles for the car traffic
on a road. We extend this diagram to the case of two circular
roads with an intersection. From a Petri net model we derive
the dynamics in terms of the composition of a standard linear
operator and a minplus operator which determines uniquely the
system trajectory. We show, experimentally, that there exists an
average flow which becomes asymptotically independent of the
initial position of the vehicles when the size of the system goes
to infinity. We study the corresponding fundamental diagram
and analyze the different phases that can appear.

I. I NTRODUCTION

The fundamental diagram gives the relation between the
flow and the vehicle density for the car traffic on a road. It
has been observed empirically and derived theoretically in
the case of a unique road or a regular system of roads see
for example [5], [15], [2], [17], [16] and the surveys [7], [4].
We study here the fundamental diagram for a system of two
circular roads without overtaking and a unique crossing.

Microscopic traffic systems have been studied in statistical
physics as particular classes of cellular automata. In the
cellular automaton classification [4], the model used here
is of Biham-Middleton-Levine [3] (BML) type (used to
describe simplified regular towns). But contrary to BML, we
accept the possibility of turning like in [11], [12], [13] but,
here, with deterministic turn (if we give a number to each
car entering in the crossing, the odd cars go south and the
even cars go to west) and making a special attention to the
case of only two roads and a crossing. This last case has
been studied in detail in [8], [9], [10] without the possibility
of turning with a stochastic modeling. We follow the point
of view discussed in [16] where the exclusion process is
given in terms of timed Petri nets using the minplus algebra
to write the corresponding dynamics. The model considered
here is the simplest one with turning possibility. It is also
the simplest traffic model which is not an event graph.

From a Petri net model we derive a well posed dynamic
obtained by composing a standard linear operator with a
minplus operator. In the preliminary case of only a circular
road with a retarder, adapting [16], the fundamental diagram
is obtained immediately from the graphic interpretation of
the eigenvalue of the minplus linear dynamics of the corre-
sponding event graph. In the complete case of the two roads
and a crossing, we show, experimentally, that there exists
an average flow which becomes independent of the initial
vehicle positions when the size of the system goes to infinity.
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We show experimentally that the corresponding fluid Petri
net presents the same properties and has the same asymptotic
diagram. We recover, on the computed fundamental diagram,
the presence of several traffic phases known in the cellular
automata literature (in the case of stochastic models).

The influence of a traffic light control on this diagram is
also given. It shows the potential gain obtained by setting
traffic lights with or without feedback on the states of the
roads.

II. M INPLUS ALGEBRA

In this section we present the main definitions and prop-
erties of the minplus algebra. The reader is referred to [1]
for an in-depth treatment of the subject.

The structureRmin = (R ∪ {+∞} ,⊕,⊗) is defined by
the setR∪{+∞} endowed with the operationsmin (denoted
by ⊕, called minplussum) and + (denoted by⊗, called
minplusproduct). The elementε = +∞ is thezeroelement,
it satisfiesε⊕x = x and isabsorbingε⊗x = ε. The element
e = 0 is theunity, it satisfiese⊗x = x. The main difference
with respect to the conventional algebra is the idempotency
of the additionx⊕ x = x and the fact that addition cannot
be simplified, that is: a ⊕ b = c ⊕ b 6⇒ a = c. It is called
minplus algebra.

This minplus structure on scalars induces an idempo-
tent semiring structure onm × m square matrices with
the element-wise minimum and matrix product defined by
(A⊗B)ik = minj (Aij + Bjk) , where the zero and unit
matrices are still denoted byε and e. We associate to a
square matrixA, a precedence graphG(A) where the nodes
correspond to the columns (or the rows) of the matrixA and
the arcs to the nonzero entries (theweight of the arc(i, j)
being the non zero entryAji). We define|p|w the weight
of a pathp in G(A) as the minplus product of the weights
of the arcs composing the path (that is the standard sum of
weights). The arc number of the pathp is denoted|p|l. We
will use the three fundamental results (see [1]).

Theorem 1:Given A a m × m minplus matrix, if the
weights of all the circuits ofG(A) are positive, the equation
X = A ⊗ X ⊕ B admits a unique solution:X = A∗ ⊗ B
where

A∗ =
∞⊕

n=0

An =
m−1⊕
n=0

An .

Theorem 2:If the graphG(A) associated with the minplus
matrixA is strongly connected, the matrixA admits a unique
eigenvalueλ ∈ Rmin:

∃ X ∈ RN
min : A⊗X = λ⊗X with λ = min

c∈C

|c|w
|c|l

, (1)



whereC is the set of circuits ofG(A).
Theorem 3:The minplus linear dynamic system associ-

ated with the minplus matrixA, with strongly connected
graphG(A), defined by:Xn+1 = A⊗Xn is asymptotically
periodic:

∃T,K, λ : ∀k ≥ K : Ak+T = λT ⊗Ak .

III. PETRI NET DYNAMICS

A Petri net N is a graph with two set of nodes: the
transitionsQ (with Q elements) and theplacesP (with P
elements) and two sorts of arcs, thesynchronization arcs
(from a place to a transition) and theproduction arcs(from
a transition to a place).

A minplusP ×Q matrix D, calledsynchronization matrix
is associated to the synchronization arcs. It is defined by
Dpq = ap if there exists an arc from the placep ∈ P to the
transition q ∈ Q and Dpq = ε elsewhere, whereap is the
initial marking and is represented graphically by the tokens
in the places. To count the tokens in the places we also use
a standard matrix associated withD denotedχD (with the
same size asD) defined byχDpq = 1 if Dpq 6= ε and equal
to χDpq = 0 elsewhere.

A standard algebraQ×P matrix H(δ), calledproduction
matrix is associated with the production arcs. Itspq entry
is the delay operatorHqp(δ) = mqpδ

τp (wheremqp is the
multiplicity of the arc andτp the minimal sojourn time in
the placep (represented by sticks in the place) if there exists
an arc fromq to p and0 elsewhere. A delay operator acts on
series, it is defined bymδτ : (Xn)n∈N 7→ m(Xn−τ )(n−τ)∈N.
By extensionH(1) is a matrix with real entriesmqp.

Therefore a Petri net is characterized by the quadruple :

(P,Q,H(δ), D) .

It is a dynamic system in which the token evolution is par-
tially defined by the transition firings saying that a transition
can fire as soon as all its upstream places contain at least
a token having stayed a time larger than the place sojourn
time. When a transition fires, it generates a number of tokens
in each downstream place equal to the arc multiplicity of the
arc joining the transition to the place.

In the case of adeterministicPetri net, where all the places
have only one arc downstream, the dynamic is well defined,
that is, there is no token consuming conflict between the
downstream transitions. In the non deterministic case, we
have to precise the rules which resolve the conflicts by,
for example, giving priorities to the consuming transitions
or by imposing ratios to be respected. As soon as this
rules are added, the initial nondeterministic Petri becomes
a deterministic one.

Theorem 4:Denoting X = (Xq)q∈Q the vector of se-
quencesXq = (Xq

n)n∈N such that the entryXq
n, is the firing

number of the transitionq up to timen, we have1:

X =
(
XH(δ)

)
⊗D .

1If f is a nonlinear functionX = (Xδ)f means(Xn+1 = f(Xn))n∈N.

Proof: By definition of the firing instants, the Petri net is
such that at each instant, at least, one place upstream of each
transition, is empty. The series representing the numbers of
tokens in a place as function of time being:a+X(δ)H(δ)−
X(δ) (wherea is the vector of the initial markings) and each
minimum of the token numbers in the places upwards each
transition being0 (by definition of firing) we have:(

XH(δ)−Xχt
D

)
⊗D = 0 ,

which gives the announced result, using the fact that, the
Petri net being deterministic, from each place leaves exactly
one arc.�

The nondeterministic Petri nets do not have a well defined
dynamics but some constraints on the token dynamics are
imposed by the nets. We can define dynamics invariants
satisfied by all the possible dynamics. Given a sequence of
firings σ, we denote byXσ the line vector of the transition
firing numbers and byaσ the line vector of the token numbers
in the places after this firing sequence. We have:

aσ = a + Xσ(H(1)− χt
D) .

From this equation the following result is clear.
Theorem 5:For all column vectorρ satisfying

(H(1)− χt
D)ρ = 0

we have
aσρ = aρ, ∀σ .

The numbersaρ are theright-invariantsof the Petri net.
In the case ofevent graphs, particular deterministic Petri

nets where all the multiplicitymqp are equal to1 and all the
places have exactly one arc upstream, the dynamics is linear
in the minplus sense. It is:

X = X ⊗A(δ),

with A(δ)qq′ = ap ⊗ δp with p the unique place connected
to the transitionsq andq′.

A corollary (see [1]) of Theorem 2 is:
Theorem 6:For a strongly connected event graph the

throughput defined byλ = limn Xq
n/n is independent of

q and is equal to:

λ = min
c∈C

|c|a
|c|t

,

whereC denotes the set of circuits of the event graph,|c|a
the total token number in the circuitc and|c|t the total stick
number in the circuitc.

IV. T HE FUNDAMENTAL TRAFFIC DIAGRAM FOR A

CIRCULAR ROAD WITH A RETARDER

It is easy to derive a quite realistic fundamental traffic
diagram from simple dynamical minplus linear models. For
pedagogical reason only the most simple diagram will be
given here. To see more realistic one, in the simpler case
where there is not a retarder, see [16]. For another analytic
result see Derida [5].
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Fig. 1. A circular road.

A. Exclusion process modeling for the road with a retarder

Adapting [2] to the case of a road with a retarder, let us
consider a circular road with places occupied or not by a car
symbolized by a 1. Let us suppose that there is a retarder in
position 1 where we have to stay during at least two time
steps. The dynamics is defined by applying at each time step,
simultaneously in all positions (at the exception of position
1), the rule10 → 01. In position 1 and timen we can
apply the same rule only if there was a vehicle at timen−
2. For the example given in Figure 1 Part II, we give, in
Table I, three simulations of the system with three different
vehicle densities corresponding to the three phases (that will
be discussed later) of the system. For such a system we can

n 1/3 < d/(1 + 1/m) d/(1 + 1/m) ≤ 1/3 d ≥ 2/3
d < 2/3

1 1010100101 1000100100 0111011011
2 1001010011 1000010010 1110110110
3 0100101011 0100001001 1101101101
4 1010010110 1010000100 1011011011
5 1001001101 1001000010 0110110111
6 0100101011 0100100001 1101101110

TABLE I

TRAFFIC SIMULATION FOR THE THREE POSSIBLE PHASES.

call densityd the number of carsp divided by the number
of placesm that isd = p/m. We call flow

f =
m

m + 1
limn→∞ Pn/n

p
d =

1
m + 1

lim
n→∞

Pn/n

where Pn is the total number of car displacements until
instantn. The fundamental traffic diagram gives the relation
betweenf andd.

If p/(m+1) ≤ 1/3, after a transient period of time all the
cars are enough separated to go forward without interaction
with the other cars. Thenf = p/(m+1) that can be written
as function of the density asf = d/(1+1/m) which is' d
as soon as1/m becomes small, that is when the size of the
system becomes large.

In the contrary, if the density is larger than2/3, all the
free places are enough separated, after a finite amount of

time, to go backwards freely; that means that: alwaysm− p
cars can go forward. Then, the relation between the flow and
the density becomesf = (m− p)/m = 1− d .

The third case is whend/(1 + 1/m) > 1/3 andd < 2/3
then the retarder is fully busy that is all the three steps a car
leaves the retarder and the flow is1/3.

These results can be observed numerically and will be
proved easily using event graph modeling in the next sub-
section.

B. Event graph modeling

Using the notation of Section III, the dynamics of the event
graph associated with the traffic on a circular road with a
retarder and described by Figure 1 Part III2, is defined by
the matrix:

A(δ) = δ


ε δa1 ε . . ε ām

ā1 ε a2 ε . . ε
. . . . . . .
ε . . ε ām−2 ε am−1

am ε . . ε ām−1 ε


where the initial car positions are given by the booleansaq

which are equal to1 when the cell is filled by a car and0 in
the other case and where we use also the notationā = 1−a.

The numbers of cars entered in sectionq of the road before
time n being denotedXq

n, we have:

Xq
n+1 = min{aq−1 + Xq−1

n , āq + Xq+1
n }, ∀q 6= 2 ,

X2
n+1 = min{a1 + X1

n−1, ā2 + X3
n} ,

where the operations on the indexq are done modulom.
A corollary of the Theorem 6 gives the fundamental

diagram.
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Fig. 2. Fundamental traffic law for one circular road with a retarder.

Theorem 7:The fundamental diagram, giving the average
flow f as a function of the vehicle densityd, for a circular
road with a retarder is:

f(d) = min(d/(1 + 1/m), 1− d, 1/3),

wherem is the size of the road counted in vehicle places.
Proof: We see on Figure 1 Part III that there are four

types of circuits :
• the exterior of average weightp/(m + 1),
• the interior circuit of average weight(m− p)/m,
• circuits, corresponding to going forward some steps and

going backward the same number of steps without using
the retarder, of average weight1/2,

2In this picture in all the places, at the exception of placea1, there is
one stick not shown.



• circuits, corresponding to going forward some steps and
going backward the same number of steps, of average
using the retarder, with smallest average weight equal
to 1/3.

Therefore we havef = min(p/(m + 1), (m − p)/m, 1/3),
which gives the result.

V. TWO CIRCULAR ROADS WITH ONE INTERSECTION

We consider a system composed of two unique-direction
circular roads with a unique intersection shown in Figure 3.
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Fig. 3. Two circular roads with a unique crossing.

We suppose that the cars cannot overtake and we model
their moving in the same way as in the previous section.
The cars leaving the intersection take the two downstream
roads with the same proportion. We show the existence of
a fundamental diagram for this new case and discuss its
properties showing the existence of several traffic phases.

A. Minplus Petri net modeling

We can define completely the system in terms of a
deterministic Petri net given in Figure 4 in the case of two
roads with the same sizes.

As in the previous section, each road is cut up inν [resp.
ν′] sections able to contain one car. To each sectionq is
associated the coupleaq and āq of the Petri net places. If
aq = 1 then āq = 0 and the section is occupied by a car. If
aq = 0 then āq = 1 and the section is free. The transition
q correspond to the input of the sectionq. The crossing is
considered as a section with two inputs ant two outputs.
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Fig. 4. The complete Petri net for the intersection.

If Xq
n denotes the number of firings of the transitionq

until time n, using the minplus notations, the dynamic of
the system is defined, in the case whereν = ν′, by:

Xq/δ = aq−1X
q−1 ⊕ āqX

q+1, (2)

q ∈ {2, . . . , ν − 1, ν + 2, . . . , 2ν − 1} , (3)

Xν/δ = āνX1Xν+1/X2ν ⊕ aν−1X
ν−1 , (4)

X2ν/δ = ā2νX1Xν+1/(Xν/δ)⊕ a2ν−1X
2ν−1 , (5)

X1/δ = aν

⌊√
1XνX2ν

⌋
⊕ ā1X

2 , (6)

Xν+1/δ = a2ν

⌊√
XνX2ν

⌋
⊕ āν+1Xν+2 , (7)

where the minplus division “/” is the standard subtraction,
taking the square root in minplus algebra means take the half
part,b.c denotes the rounding down operator, andδ the back
time shifting operator acting on time sequences. For example

X1/δ = aν

⌊√
1XνX2ν

⌋
⊕ ā1X

2

means in standard algebra

X1
n+1 = min

{
aν +

⌊
1 + Xν

n + X2ν
n

2

⌋
, ā1 + X2

n

}
.

This system of equations is implicit but triangular and
therefore defines uniquely the trajectory of the system.

Neglecting the rounding in (6) and (7), corresponds to fluid
Petri nets where it is not necessary to have integer numbers of
tokens in upstream places of a transition to start the firings3.
In this case the system can be written in matrix form using
both standard algebra and minplus algebra.

X = (XH(δ))⊗D ,

with H(δ) matrix 2ν × 4ν defined by:

H(δ) = δ

[
F Eνν/2 P−1 E1ν − Eνν/δ

Eνν/2 F E1ν − Eνν P−1

]
D = A⊗ J with J a 4ν × 2ν matrix par defined by:

J =


P ε
ε P
I ε
ε I


andA = diag(a, ā) a 4ν × 4ν diagonal matrix where

• ε denotes the zero element of the minplus algebra that
is +∞,

• I the ν × ν minplus identity matrix,
• P the ν × ν matrix associated with the permutation

(2, · · · , ν, 1),
• Eij the ν × ν matrix having only one non null element

in position ij equal to the unit element,
• F = Id − Eνν/2 with Id the standard algebra identity

matrix.

3As soon as there are real token numbers in each upstream places the
minimum of this number is consumed in each place.



B. The global fundamental diagram

The simulation can be easily done using the maxplus
toolbox of Scilab [18]. In Figure 5, we show the relation
between the average density and the average flow in the case
of one crossing. Analyzing the results, it appears that the
maximal flow is equal to the half of the maximal flow of a
unique road case. Indeed the crossing has to serve two streets,
one West-East and one South-North with the same capacities.
The crossing is the bottleneck of the system and determines
its average speed. The maximum flow corresponds to the
optimal level of congestion that is the saturation of the
crossing.

0

0.25

0 1

d

f

0.5

Fig. 5. Fundamental diagram for two circle-streets and a crossing with
priority to the right (the relative size of the roads varies from 1 to 10).

Moreover, we observe on these diagrams three phases:

• The low density phasewhere a periodic regime appears
with the average of the total population in each road.
On each road the vehicles go freely not bothered by
the others. At each time step, when a car reaches
the intersection, the intersection is free. The system is
similar to an ideal gas where there is no interaction
between the molecules.
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Fig. 6. Initial position and asymptotic periodic position of vehicles in the
low density case.

• The middle density phasewhere a periodic regime
appears with different populations on each road. The
size of the population on the road with priority stays
constant when we change the total number of vehicles
(staying in this phase); new vehicles will be absorbed
by the road without priority. The intersection reaches its
maximal regime (one time step free one time step full).
We can think to a system with a gas in the priority road
and a melange of liquid and gas in the other road (lower
temperature). If we add molecules they condense into
liquid in the road without priority.

• Thehigh density phasethere is a blocked regime. There
are still free places in the system, but a vehicle still
wants enter in the road without priority which is full.
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Fig. 7. Initial position and asymptotic periodic position of vehicles in the
middle density case.

If the vehicles could go forward in this last road, some
vehicles would be able to leave it, but they cannot go
forward because this road is full. For two roads with the
same size, this very abrupt blocking appears at density
1/2. At this density, everything works well but if a car is
added, this car slows down the average speed of the road
without priority. Then, there is a leak of the population
from the priority road to the other. The road without
priority fills up, becomes full and the last car in the
priority road wants to enter in the other one and the
system blocks.
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Fig. 8. Initial position and asymptotic blocked position of vehicles in the
high density case.

C. The fundamental diagram of each road

In Figure 9 we show the flow density relation for the road
without priority. We see that its shape is very closed to the
system with a unique road and a retarder.

0
0

Without Priority

With Priority

0.25

f f

d d

1 0 1
0

0.25

0.25

Fig. 9. Fundamental diagram for the two streets (without and with priority)
for the system with two circle-streets and a crossing.

The priority road has a fundamental diagram Figure 9
completely different which shows that its density does not
increase when we add cars but stay in middle global density
phase. On this diagram we see that the phase transition to
the blocking phase is very abrupt with a car pumping from
the priority road towards the other road.

D. Comparison of intersection policies

To avoid this blocking phenomena, light control can be
added at the intersection. In future work, we intend to
optimize the light control by computing feedback on the



jam level of each road. For the time being we give the
fundamental diagram for the three following policies:
• right priority,
• half time red, half time green,
• alternating the priority: duringT time steps right pri-

ority, then during theT next time steps we use left
priority (this case corresponds to a policeman making
the circulation).

We compute the global fundamental diagram for this three
cases and show them in the same Figure 10 (the two roads
have the same size).

The comparison of the three diagrams shows that the light
control degrades a little the circulation in the low density
case but improves a lot in the high density blocking case.
The third policy is the best and could be implemented by a
simple feedback. In a real town a global feedback would be
much more complicated to obtain see [6].
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Fig. 10. Comparison of the fundamental diagrams for the complete system
(two roads of same size) for different control policies (no light control and
right priority (1), light control with half time green half time red (3), without
light control and alternate priority(2)).

E. Mathematical justification of the fundamental diagram

We have obtained experimentally the fundamental dia-
gram. It is interesting to try to justify mathematically its
existence. To justify its existence we need two things:
• The existence of an average flow: that is the limit of

Xn/n exists when goes to infinity.
• This independence of average flowf with the initial

vehicle positions.

10101010

ν=3 ν=12 ν=27 ν=48
0.261 0.255 0.2530.3

Fig. 11. Asymptotic independence of the fundamental diagram with the
initial vehicle positions (the diagram for several initial positions are plotted
on the same picture for increasing sizes of the system).

These two affirmations have not still be proved. The second is
false in general. But it is true that the asymptotic flow (where

the asymptotic is done on the size of the roads without
changing their respective size) does not depend of initial
position of the vehicles. Moreover the fluid and the discrete
Petri nets models have the same asymptotic diagram. This
result is clear experimentally, see Figure 11, but has to be
proved mathematically.

VI. CONCLUSION

The traffic model proposed here, using simple Petri nets
and minplus algebra, seems to contain the essence of the
traffic problem. From this model, we can compute the
fundamental traffic diagram linking the average flow and the
car density. Even on the very simple system studied, here
consisting of two circular roads and an intersection, several
phases appear in the fundamental diagram.

To define these fundamental diagrams, the existence of
an average flow independent of the initial vehicle position
is necessary. Future mathematical analysis will attempt to
justify the existence of this average flow variable shown here
experimentally and its independence with the initial vehicle
positions.
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